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INTRODUCTION

Studies conducted during the initial development of drugs such as toxicity, cor-
rosion and drug activity were carried out on animals; however, in the past 10 
to 20 years, alternatives have been sought due to the fact that animals do not 
effectively model human in vivo conditions and unexpected responses are ob-
served in the studies. Cell culture studies made positive contributions to the ini-
tial development of drugs. Contrary to animal studies, the need for low drug and 
a short response time are the characteristics for in vitro cell culture methods1. In 
2005, more than 100 million animals were used and 10 billion dollars were spent 
for animal toxicity experiments2. It is possible to reduce this cost and the amount 
of animal use for experiments with well-designed cell culture studies3. 

Among other health authorities, the FDA, has recommended the use of the hu-
man cell line to identify metabolic pathways for drugs and shared their applica-
bility in in vitro tests in guidelines published in 20044. In November 2013, the 
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National Institutes of Health reported that more than 230 embryonic stem cell 
lines are appropriate for research5. 

The number of publications on cytotoxicity and permeability studies using cell 
cultures as seen on PUBMED clearly shows that these topics have been trending 
higher over the past several years (Figure 1).

Figure 1. Numbers of publications in Pubmed using keywords ‘cell culture’, ‘cytotoxicity’ and 
‘permeability’.

CANCER CELL LINES AS MODEL FOR DRUG STUDIES

Cancer cell lines are used as a model for research and drug studies (Table 1). 
During the development of therapies, drugs are tested and developed by using 
cancer cell lines as an important model6. Drugs are tested on cancer cell lines by 
pharmaceutical companies7. 

Table 1. Most used cancer cell lines (modified from Ferreira et al., 20138). 

Cancer cell line Species Disease

HeLa Homo sapiens Cervix adenocarcinoma 

Caco-2 Homo sapiens Colorectal adenocarcinoma

MCF-7 Homo sapiens Breast adenocarcinoma 

A549 Homo sapiens Human lung carcinoma

U87MG Homo sapiens Glioblastoma-astrocytoma 

HT-29 Homo sapiens Colon adenocarcinoma

HEP-G2 Homo sapiens Hepatocellular carcinoma

K-562 Homo sapiens Chronic myeloid leukaemia 

Cos7 Cercopithecus aethiops SV40 transformed - kidney

PC3 Homo sapiens Prostate adenocarcinoma 

A375 Homo sapiens Malignant melanoma 

HEK 293 Homo sapiens Human Embryonic Kidney 293 cells

CHO Chinese hamster Chinese hamster ovary cell line
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The use of cancer cell lines for drug studies has advantages and disadvantages. 
Advantages of cancer cell lines are: They can be easily handled and manipulated. 
They have high homogeneity. Cancer cell lines have similarity with the initial 
tumour and it makes them advantageous to test cancer drugs on cancer cell 
lines. For experiments, they are unlimited auto-replication source and are easily 
substituted. The experiment results of the cancer cell lines for drug studies are 
reproducible. They also have disadvantages, such as they can be cross-contam-
inated with Hela cells. During studies, they can lose homogeneity and genomic 
stability, and they are also susceptible to contamination with bacteria and my-
coplasma. And also, another difficulty is that the growth of long-term cancer cell 
lines is challenging8. 

Drug Screening in Cancer Cell Lines

Drug development begins with drug testing in cancer cell lines. Afterwards, drugs 
can be tried in in vivo clinical trials. Researchers have evaluated cytotoxicity of 
drugs on cancer cell lines for many years and data from these experiments have 
been proven to have clinical predictive value9,10. Diverse responses to drugs are 
displayed by different cancer cell lines9. Cell line panels are also useful for drug 
tests. The first cancer cell line is the panel NCI-60 which utilizes 60 cancer cell 
lines. This cancer cell line panel was developed to reduce animal experiments for 
testing of the drugs11. The mechanism, physiological processes and treatments 
of diseases can be explored by the help of the release of molecules from drug 
delivery carriers, drug diffusion tests and drug toxicity tests. Drug efficacy tests 
and drug toxicology tests are valuable as they present an alternative to animal 
experiments6,12. REACH is a regulation of European Union with four phases 
named registration, evaluation, authorization and restriction of chemicals and 
indicates that animal testing on chemicals should be avoided. 7th Amendment 
to the Cosmetics Directive of European Union declares that finished cosmetic 
products and ingredients should be tested on alternative non-animal tests. This 
regulation of European Union has made cell-based experiments even more im-
portant13.

In Vitro Systems for Toxicity Testing

Cell culture conditions are improved to mimic more closely an in vivo growth 
environment. These improvements are co-culture with normal cells such as my-
ofibroblasts and immune cells and three-dimensional (3D) matrices. Levels of 
specific growth factors and additives can be controlled by microfluidic perfusion 
systems14. 

Toxicity testing of new drugs will eventually be done in animal models to under-
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stand overall toxicity. If toxicity testing of new drugs is done in appropriate in 
vitro cell lines, limited animal model toxicity tests are needed. Toxicity tests on 
cell lines can be evaluated by testing the drug on a variety of cell types for which 
cell lines are available. These toxicity tests on cell lines can be an indication for 
the drug treatments for the cancer type which was studied14,15.

Although a suitable source of in vitro normal cell cultures were needed, only 
cancer cell lines were a suitable source for these tests. Normal cells from human-
induced pluripotent stem cells (hiPSC) and improved epithelial cell culture con-
ditions can be used nowadays to broaden in vitro toxicity testing at the normal 
cellular level14,15. hiPSC-derived cardiomyocytes, endothelial cells, hepatocytes, 
and neuronal cells are commercially available. In the future, liver and heart cells 
will be available through these techniques to be tested and toxicity testing in 
whole animals may be reduced14. 

Cell Viability Assays

Cell viability assays are widely used for in vitro drug and formulation toxicol-
ogy studies. There are alternative assays for cell viability16,17,18. Commonly used 
assays are for cytotoxicity or cell viability detection: the MTT assay, the LDH 
assay, the neutral red, XTT assay and AlamarBlue assay. Activity of lactate dehy-
drogenase in the extracellular medium is measured by the LDH assay. Cell death 
is indicated by intracellular LDH release into the culture medium19. The neutral 
red assay also indicates cell viability. The neutral red is taken into the cell by liv-
ing cells and sequestrated in the lysosomes of cells20,21. The MTT assay is a cell 
viability assay which determines cytotoxicity, and the validity of this assay was 
determined in cell lines22. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide) is a tetrazolium salt. The tetrazolium ring of tetrazolium salt 
within the mitochondria is cleaved by succinate dehydrogenase, which results in 
its conversion to an insoluble purple formazan. The insoluble purple formazan 
accumulates in healthy cells due to the impermeability of the purple formazan 
to the cell membranes23. MTT or XTT are tetrazolium salt reduced to a colored 
formazan according to viable cell number16,17. Tetrazolium salts (MTT or XTT) 
are reduced by generation of NADH and NADPH. These colored formazans are 
measured in an automated colorimeter. MTT assay has an extra solubilization 
step for formazans which has to be dissolved in dimethylsulfoxide (DMSO) be-
fore colorimetric measurement. XTT tetrazolium assay was developed to elimi-
nate this solubilization step and viable cells directly metabolize XTT reagent to 
a water soluble formazan16,24. Optical density in the culture wells can be directly 
read by calorimetry. Use of Alamar Blue as a fluorescent dye for cell viability tests 
started in 199325. Alamar Blue is a non-fluorescent, non-toxic blue dye which is 
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reduced to a pink fluorescent dye as a result of cell viability26. 

Cell-based in vitro models have been used to study drug permeability through 
buccal (TR146 cell culture), intestinal (Caco-2 cell, TC7, MDCK, LLC-PK1), na-
sal (cultured nasal cells), pulmonary (Calu-3), ocular (corneal epithelial cells), 
rectal, vaginal (cervical cell lines) routes27. Among these, intestinal permeability 
is the most studied because the oral route of drug administriation is the most 
common28.

Intestinal Permeability by Cell Culture

Genomics, proteomics, robotics and in silico chemistry are used to reduce costs 
in the drug discovery cycle. Understanding biopharmaceutical properties such 
as solubility, metabolic stability and intestinal permeability is an important task 
in the industry29.  The physico-chemical properties of the active drug substance 
and its product, the physiological functions of body tissues and organs, and the 
complex process of drug absorption are influenced by physical and biochemi-
cal properties of the epithelial barrier30. While permeability of drug compounds 
through the intestinal membrane is a complex process29. The mechanism of drug 
transport in cell cultures is by passive transcellular and paracellular transport 
and active-carrier mediate transport31.  The intestinal permeability of a drug can 
be evaluated by many techniques29. These methods are: 1) in vitro tissue methods 
(using diffusion chamber); 2) in vitro cell methods- (Caco-2; MDCK); 3) in vitro 
artificial membranes (parallel artificial membrane permeability assay (PAMPA) 
or immobilized artificial membrane (IAM) columns); 4) in vivo methods (whole 
animal pharmacokinetic studies; 5) in situ methods (single-pass perfusion); 6) 
computational approaches. These methods for the permeability assessment of 
drugs can be used individually or in combination. Cell culture models are pre-
ferred for the permeability assays due to predictability and throughput 29. Re-
cent studies for cell culture models for pharmaceutical technology are shown in 
Table 2.

Human cell culture models for the toxicity test of aerosolized nanoparticles are 
Alveolar epithelial cells (A549) and Airway epithelial cells (Calu-3, 16HBE14o-, 
BEAS-2B)32. As nanosized ZnO are used in sunscreens, the effect of the cytotox-
icity of ZnO is important. Two commercially available ZnO powders’ cytotoxic-
ity was tested in human colon-derived RKO cells33. Albanese and Chan, 2011 
produced transferin-coated gold particles by Frens method and they tested the 
effect of aggregation of particles on three different cell lines (HeLA, A549, MDA-
MD-435) due to the fact that aggregation of particles can affect toxicity. They 
concluded that uptake of particles are more affected than toxicity34. In another 
study, the effects of different sized silver nanoparticles on cytotoxicity were eval-
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Table 2. Examples of recent studies for pharmaceutical technology

Studies Cell line used toxicity testing 
/permeability test

In vitro cell exposure studies for the assessment of 
nanoparticle toxicity in the lung—A dialog between aerosol 
science and biology32

co-cultures of two different 
epithelial cell lines, A549 and 
16HBE14o- epithelia cell lines

ZnO particulate matter requires cell contact for toxicity in 
human colon cancer cells33 RKO colon cancer cells

Effect of gold nanoparticle aggregation on cell uptake 
and toxicity34 HeLa and MDAMB-435 cells

Impact of silver nanoparticles on human cells: effect 
of particle size35

A549, SGC-7901, HepG2 and 
MCF-7 cells

Cellular uptake and toxicity of gold nanoparticles in prostate 
cancer cells: a comparative study of rods and spheres36 PC-3 cells

Cytotoxicity and oxidative stress induced by different 
metallic nanoparticles on human kidney cells37

IP15 (glomerular mesangial) 
and HK-2 (epithelial proximal) 
cell lines

Thermoreversible Pluronic® F127-based hydrogel 
containing liposomes for the controlled delivery of 
paclitaxel: in vitro drug release, cell cytotoxicity, and 
uptake studies38

KB cancer cells

Cytotoxic effects of iron oxide nanoparticles and 
implications for safety in cell labelling39

C17.2 neural progenitor cells, 
PC12 rat pheochromocytoma 
cells and human blood 
outgrowth endothelial cells

Cytotoxicity induced by engineered silver nanocrystallites is 
dependent on surface coatings and cell types40

Mouse macrophage (RAW-
264.7) and lung epithelial 
(C-10) cell lines

Vitamin E TPGS coated liposomes enhanced cellular uptake 
and cytotoxicity of docetaxel in brain cancer cells41 C6 glioma cells

Curcumin loaded poly (2-hydroxyethyl methacrylate) 
nanoparticles from gelled ionic liquid–In 
vitro cytotoxicity and anti-cancer activity in SKOV-3 cells42

SKOV-3 ovarian cancer cell 
lines

Toxicity of copper oxide nanoparticles in lung epithelial 
cells exposed at the air-liquid interface compared with in 
vivo assessment.43

HBEC or A549 cells.

Cytotoxicity assessment of lipid-based self-emulsifying drug 
delivery system with Caco-2 cell model: Cremophor EL as 
the surfactant44

Caco-2 cells

Impact of lipid-based drug delivery systems on the transport 
and uptake of insulin across Caco-2 cell monolayers45 Caco-2 cells

Cellular uptake and transcytosis of lipid-based nanoparticles 
across the intestinal barrier: relevance for oral drug 
delivery46

Caco-2 cells

Regional Morphology and Transport of PAMAM Dendrimers 
Across Isolated Rat Intestinal Tissue47 Caco-2 cells



69Acta Pharmaceutica Sciencia. Vol. 55 No. 3, 2017

uated on four human cell models (A549, SGC-7901, HepG2 and MCF-7). The 
experiments with 5 nm, 20 nm and 50 nm silver nanoparticles showed that the 
smallest - (5 nm) is the most toxic nanoparticle among them. They concluded 
that the reason may be that when nanoparticles are smaller, they enter cells 
more easily than larger ones35. Properties of gold nanoparticles make them an 
important tool for cancer therapy, gene delivery and cancer detection. Gold na-
noparticles of various types (plain spherical, PEGylated spherical and PEGylated 
rods) were compared with each other to evaluate cytotoxicity on a human pros-
tate cancer cell line (PC-3 cells). The results showed that the cytotoxicities of 
these gold nanoparticles were not different from one another36. 

Metallic nanoparticles are used in medical treatments but can have a toxic effect 
on the kidneys. Pujalté et al., 2011 tested nanoparticles (TiO2, ZnO and CdS) 
which were produced for industry on human renal culture cells. While TiO2 na-
noparticles showed no cytotoxicity, ZnO nanoparticles showed dose-dependent 
cytotoxicity and CdS nanoparticles are the most toxic37.

In another study, Paclitaxel loaded liposomes were incorporated into a ther-
moreversible hydrogel called Pluronic F127 in order to improve the solubility 
of paclitaxel and increase drug loading. Human oral cancer KB cell lines were 
incubated with PTX formulation loaded with liposomal 18% F127 gel, Taxol or 
liposome. Blank liposomal F127 gel was found to be safer than pure liposome38.

Iron oxide nanoparticles are used for cell labelling in biomedical research. 4 dif-
ferent types of iron oxide nanoparticles were produced and their toxicity was 
tested on human blood outgrowth endothelial cells, C17.2 neural progenitor 
cells, and PC12 rat pheochromocytoma cells. Non-toxic concentration was de-
termined for these nanoparticles to be used for the MR visualization39.

Silver nanoparticles were used for their antimicrobial properties and biomedi-
cal applications such as wound dressings. Different silver nanoparticles were 
produced. Toxicity measurements were performed on lung epithelial (C-10) cell 
lines and mouse macrophage (RAW-264.7). In this study, they concluded that 
surface charge and coating materials used in the synthesis, particle aggregation, 
and the cell-type used for the tests affect the cytotoxicity results. Based on cy-
totoxicity results, macrophage cells were found to be more sensitive than lung 
epithelial cells40. 

In one study, liposomes coated with a PEGylated vitamin E (TPGS) with doc-
etaxel were developed for treatment of brain tumours. Cytotoxicity of the li-
posomes were tested on C6 glioma cells. TPGS coated liposomes have higher 
cytotoxicity than PEG coated liposomes 41.
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The anticancer activity of Curcumin loaded poly (2-hydroxyethyl methacrylate) 
nanoparticles was tested on ovarian cancer cells (SKOV-3) and the results 
showed that Curcumin loaded poly (2-hydroxyethyl methacrylate) nanoparticles 
exhibited a better level of tumor cells regression activity than free curcumin42.

In another study, an evaluation of the toxicity of copper oxide nanoparticles 
was performed on lung adenocarcinoma cells (A549 cells) and human bronchial 
epithelial cells (HBEC) using an in vitro air–liquid interface (ALI) exposure sys-
tem. Exposure of CuONP significantly reduced cell viability in a dose-dependent 
manner. CuONP were more toxic on A549 cells than HBEC43.

Lipid-based self-emulsifying drug delivery systems are used for solubilizing 
poorly soluble drugs. When excipients and formulations are toxic, they damage 
cell monolayers and this artificially increases drug permeation. Understanding 
their toxicity is important for the correct interpretation of results. Bu et al., 2016 
showed that using Cremophor EL as the surfactant did not damage the Caco-
2 cell layer and did not induce toxicity in the lipid-based self-emulsifying drug 
delivery system44.

In one study, Self-(nano)-emulsifying drug delivery systems (SNEDDSs) con-
taining insulin were produced to transport insulin across the intestinal mem-
brane. Size of SNEDDS were between 35-50 nm. They demonstrated that two 
SNEDDS formulations increased the permability of insulin in Caco-2 cell mon-
olayers45. In another study, permeability of nanostructured lipid carriers and 
solid lipid nanoparticles were compared and validated by Caco-2 cell monolay-
ers. Permeability results of nanostructured lipid carriers were higher than solid 
lipid carriers46.

Intestinal permeability of Polyamidoamine (PAMAM) dendrimers were com-
pared to Caco-2 monolayers and isolated rat intestinal regional mucosae. 
TEER values of Caco-2 monolayers and isolated rat intestinal regional mucosae 
matched each other47.

Cell Culture Model for Drug Permeability Studies 

Absorption of drugs mostly occurs in the small intestinal region of the gastro-
intestinal tract. The small intestine selectively absorbs major nutrients, digests 
foreign substances and is a barrier to digestive enzymes. The surface of the small 
intestinal region increases the potential surface area available for digestion and 
absorption29. Models of human intestinal epithelium have been developed. This 
culture model is an ideal system to test the intestinal permeability of drug can-
didates. The Caco-2 cell is the model cell line which has been studied the most, 
characterized and is most useful for drug permeability studies48,49,50 (Figure 2).
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Caco-2 is a human colon adenocarcinoma cell line48. It has well-established tight 
junctions and undergoes spontaneous enterocytic differentiation. Caco-2 is also 
used to predict the oral absorption of drugs in humans due to similarity of the 
Caco-2 cell line’s permeation characteristics of drugs with permeation characteris-
tics of human intestinal mucosa. Use of Caco-2 cells as a screening tool is becoming 
more widespread in the pharmaceutical industry. Lewis lung carcinoma-porcine 
kidney 1 (LLC-PK1) cells and Madin–Darby canine kidney (MDCK) are other cell 
line models used in permeability studies. Also, the 2/4/A1 line, transfected cells 
and Caco-2 cell clones are modified cell models which can be used for permeability 
studies. MDCK cell line is obtained from dog kidney cells. MDCK cell line is used 
as a model for intestinal permeability and use of this cell line as a model was first 
discussed in 198951. Since then, MDCK cells were used for the permeability stud-
ies of early drug discovery compounds. Differentiation into columnar epithelial 
cells, formation of tight junctions and epithelial cell characteristics are common 
properties of Caco-2 and MDCK cells52. Permeation of passively absorbed drugs in 
Caco-2 cells and MDCK cells were correlated with each other.While Caco-2 cells 
grow in three weeks, MDCK cells grow in three days and it makes MDCK cells 
advantageous for the shorter cultivation period. As cell contamination and labour 
are disadvantage of longer cell culture time of Caco-2, shorter cultivation time of 
MDCK cells becomes important. The disadvantages of MDCK cells versus Caco-2 
are: permeability values of drugs may be different for transporter-mediated up-
take and/or efflux compounds due to species difference53. LLC-PK1 cells are also 
alternative cell line to Caco-2 for permeability studies and this porcine cell line can 
be utilized for the passive absorption of drugs54. The 2/4/A1 line is obtained from 
fetal rat intestine and passive paracellular permeability of 2/4/A1 line is similar 
to human small intestine. In vitro permeability models were improved by these 
modified cell lines for carrier mediated transport55,56. 

Challenges Associated with Cell Culture Models

The use of cell culture models in permeability studies presents some issues; these 
are: Important transporters for drugs are expressed in Caco-2 cells57; however, 
expression of transporters in Caco-2 is lower than human small and large intes-

Figure 2. Caco-2 permeability assay. 
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tine58. Lower expression of these transporters may yield to less correlated results 
between Caco-2 cells and human intestine. Gene expression profiles of solute 
carrier transporters (SLC), efflux transporters (ABC) and cytochrome P-450 
enzymes are different among Caco-2, MDCK and human intestine60. These dif-
ferences may affect the permeability of compounds which are specific to trans-
porters showing different expression profiles57. TEER values and permeability 
values of Caco-2 from different laboratories can be different due to varying cul-
ture conditions60,61,62. Although the transepithelial electrical resistance (TEER) of 
small intestine is estimated to be in the range of 25–40 Ω cm2, TEER of Caco-2 
cells are 234 Ω cm2. Pore sizes of intestinal epithelium and Caco-2 cells are 5 
Å and 6 Å, repectively63. When Caco-2 and MDCK cell lines were transfected 
with influx transporters, proper permeability results similar to human intestine 
were achieved. Cytochrome P450 (CYP3A4) is oxidative CYP enzyme in intestine 
and it is less expressed in Caco-2 cells compared to human intestine64. Caco-2 
cells can have different permeability values compared to human intestine due 
to cacophilicity, which means a drug reversibly binds to Caco-2 and it results in 
underestimation of permeability values. Although pH of human intestine varies 
from acidic to slightly basic pH65, Caco-2 grows in fixed pH conditions. After cell-
based permeability studies, sample analysis is mostly done using LC-MS tools. 
However, high content of salt in the transport buffer affects LC-MS by interfer-
ing with ionization29.

3D CELL CULTURE MODELS

Cell-based screening has been revolutionized by 3D cell culture technologies. 
While in 2D cell culture cells were grown on flat surfaces, in 3D cell culture cells 
were grown with the help of attachment surfaces such as extracted extracellular 
matrix (ECM)66. The ECM is the complex mixture of proteins and sugars beyond 
the membrane of the cell67. Collagen, laminin and glycosaminoglycans, such as 
chondroitin sulfate and heparan sulfate are widely used components of ECM68,69. 
The basement membrane is a specialization of the ECM required for adhesion 
of the epithelial cell layer and responsible for a wide range of epithelial cell phe-
nomena including cell identity, wound healing and migration69. ECM is not just a 
random mix of secreted components, but a specific composition of biochemicals 
and defined geometrical structure, which stimulates specific cell responses, such 
as differentiation70. Filter well inserts, sponges and gels and microcarriers are 
types of ECM. Filter well inserts are the first technology used for ECM66.  2D cell 
culture tests, animal model tests and clinical trials are the processes for drug dis-
covery. Drugs may fail during phase III due to the toxicity of the drugs or efficacy 
of the drugs71,72. Drug test failures on 2D cell cultures led to the development of 
3D cell cultures as an improved model for testing. Results of the drugs’ responses 
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are different between 2D and 3D cultures due to differences between 2D culture 
and human intestine. Understanding the toxicity of the new drug before animal 
tests is important in minimizing costs during research and development73,74. Cel-
lular responses, spatial organization of cell surface receptors, gene expression 
and cellular behaviour in 3D culture cells can differ from 2D cell culture and it 
can be concluded that 3D-cultured cells reflects in vivo cellular responses better 
than 2D cell culture75. 3D cell cultures are grown using a scaffold or in a scaffold-
free manner76. In 2D cell culture, cells form a monolayer while they are growing 
on a flat surface; attached cells proliferate. When they die, they detach from the 
surface and these dead cells are removed during the medium change77. 2D cells 
are flatter than in vivo cells. This dissimilar morphology affects the characteris-
tics of the cells and they do not properly mimic the behaviours of the cells in the 
body. However, 2D cell culture is still the commonly used in vitro test in drug 
screening76. 

In 3D cell culture, cell–cell interactions and cell–ECM interactions can provide 
the in vivo environment easily. 3D cell culture contains cells that are in various 
stages. Viable cells are at the outer part of the cluster, the core part contains 
cells at hypoxic state due to deficiency of medium78. The relative proliferation 
between 3D and 2D-cultured cells showed different trends and this prolifera-
tion rate difference also depends on cell line and matrix79,80,81,82. 3D cell culture 
has different gene, protein, and cell receptor expression compared to 2D cell 
culture75. Susewind et al., 2016 developed a 3D intestinal model by embedding 
human macrophages (THP-1) and human dendritic cells (MUTZ-3) in a colla-
gen cell and seeding Caco-2 cells on top of them. Non-inflamed and inflamed 
co-cultures were used to understand inflammation effects and cytotoxicity of 
nanoparticles. Comparison of Caco-2 monocultures and 3D co-cultures showed 
that cytotoxicity and interleukin release, which is an important biomarker for 
inflammation, was higher in 3D co-cultures83. Gomez-Roman et al., 2017 tested 
temozolomide, bevacizumab and erlotinib on 2D and 3D Glioblastoma cultures. 
They proved that these three drugs affect 2D and 3D cultures and 3D model 
responses were similar to clinical trials84. In a recent study by Ribas et al., 2016, 
the authors created a vascular microenvironment of the heart for drug develop-
ment85. In another recent study by Marsono et al., 2016, human iPSC-derived 
cardiomyocytes were used to stimulate 3D construction of myocardium86.

CONCLUSION AND FUTURE PROSPECTS

Cell culture is increasingly used in pharmaceutical research and regulators sup-
port the use of cell culture during the drug development stage. This review sum-
marizes basic techniques of human cell line studies in the pharmaceutical tech-
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nology field. Cell-based experiments are highly predictive for preclinical drug 
toxicity and permeability assessments. It is assumed that, in the future, animal 
and human clinical trials will be greatly reduced by 3D cell culture experiments.
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