SYNTHESIS AND CHARACTERIZATION OF SOME 2-(SUBSTITUTED ARYLACYLTHIO)THIAZOLINE DERIVATIVES

BAZI 2-(SÜBSTİTÜE ARİLTİYO)TİYAZOLİN TÜREVLERİNİN SENTEZİ VE YAPI TAYINİ

GÜLHAN TURAN-ZİTOUNİ*, SUZAN SEZGİN

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Anadolu, 26470-Eskişehir Turkey

In this study, five new 2-(substituted arylacyl-thio)thiazoline derivatives were synthesized by reacting 2-thiazoline-2-thiol with arylacylhalides. The structures of the compounds obtained were elucidated by IR, ¹H-NMR, FAB-MASS spectral data and elementary analyses results.

Bu çalışmada, 2-tiyazolin-2-tiyol ile arilhalojenür türevleri reaksiyona sokularak, beş yeni 2-(sübstitüe arilasiltiyo)tiyazolin türevleri sentezlendi. Elde edilen bileşiklerin yapıları, IR, ¹H-NMR ve FAB-MS specktroskopik verileri ve elemental analiz sonuçları yardımı ile aydınlatıldı.

Keywords: 2-Thiazoline-2-thiol; α -bromoacetophenone; 2- $(\alpha$ -chloroacetyl)phenol; 2-(substituted arylacylthio)thiazoline

Anahtar kelimeler: 2 - Tiyazolin - 2 - tiyol; α-bromoasetofenon; 2-(α-kloroasetil) fenol; 2-(sübstitüe arilasilti-yo)tiyazolin

Introduction

2-Thiazoline-2-thiole derivatives are known as potent insecticide (1), antithyroid (2-5), competitive inhibitor of acetylcholinesterase (6) and radioprotective (7,8) compounds.

In this work, we report the synthesis and characterization of 2-(substituted arylacylthio)thiazoline derivatives (Figure).

$$X = Cl$$
 Br

$$R_1 = H, OH$$
Figure

$$R_2 = H, Cl, NO_2, CH_3, OCH_3$$

Correspondance

Materials and Methods

Melting points were determined using a Gallenkamp apparatus and are uncorrected. The IR spectra were recorded in potassium bromide discs on a Shimadzu IR-435 Spectrophotometer. The ¹H-NMR spectra were obtained by Bruker 250 MHz and Jeol 90 MHz in DMSO-d₆ using TMS as the internal standard.

FAB+-MS were recorded at the University of Montpellier I, France. Microanalytical datas (C,H,N) agreed with the proposed structures within±0.4% of the theoretical values and were carried out by the Microanalytical Section of Service Central (CNRS, Ecole Normale Chimie de Montpellier, France).

Synthesis of the compounds

General procedure of 2-(arylacylthio)thiazoline derivatives

A mixture of the appropriate α -bromoacetophenone (9-11) (3 mmol) [or 2-(α -chloroacetyl)phenol derivatives (12-14)], 2-thiazoline-2-thiol (3 mmol) and K_2CO_3 (3 mmol) in acetone was stirred at room temperature for 3 hrs (Figure). The mixture was filtered, the filtrat was evaporated until dryness. Residue was recrystallized from ethanol. Some characteristics of the compounds are given in Table 1.

2-(Phenacylthio)thiazoline 1

This compound was obtained by the reaction of α -bromoacetophenone and 2-thiazoline-2-thiol (15)

IR (KBr, cm⁻¹); 2911 (C-H), 1691 (C=O), 1613-1468 (C=N, C=C). ¹H-NMR (DMSO-d₆) δ ppm; 3.50 (2H, t, C₅ protons of thiazoline), 4.05 (2H, t, C₄ protons of thiazoline), 4.85 (2H, s, COCH₂), 7.50-7.75 (3H, m, C₃, C₄, C₅ aromatic protons), 8.05 (2H,d J=8.34 Hz, C₂ and C₆ aromatic protons). FAB⁺ MS M+1: m/z: 238.

2-(4-Chlorophenacylthio)thiazoline 2

This compound was obtained by the reaction of α -bromo-4-chloroacetophenone and 2-thiazoline-2-thiol.

IR (KBr, cm⁻¹); 29 $\hat{5}$ 9 (C-H), 1696 (C=O), 1500-1449 (C=N, C=C). ¹H-NMR (DMSO-d₆) δ ppm; 3.50 (2H, t, C₅ protons of thiazoline), 4.10 (2H, t, C₄ protons of thiazoline), 4.85 (2H, s, COCH₂), 7.65 (2H, dd J=7.21 Hz and J=1.80, 1.75 Hz C₃, C₅ aromatic protons), 8.05 (2H, dd J=6.80 Hz, and J=1.81, 1.77 Hz C₂ and C₆ aromatic protons). FAB⁺ MS M+1: m/z: 272.

2-(4-Nitrophenacylthio)thiazoline <u>3</u>

α-Bromo-4-nitroacetophenone and 2-thiazoline-2-thiol were used for the synthesis of this compound

IR (KBr, cm⁻¹); 2999-2847 (C-H), 1685 (C=O), 1620-1518 (C=N, C=C). ¹H-NMR (DMSO-d₆) δ ppm; 3.50 (2H, t, C₅ protons of thiazoline), 4.10 (2H, t, C₄ protons of thiazoline), 4.90 (2H, s, COCH₂), 8.25 (2H,

dd J=6.99 Hz and J=2.04, 1.75 Hz C_2 and C_6 aromatic protons), 8.40 (2H, dd J=6.98 Hz, and J=1.95, 1.82 Hz C_3 and C_5 aromatic protons). FAB⁺ MS M+1: m/z: 283.

2-(2-Hydroxyphenacylthio)thiazoline 4

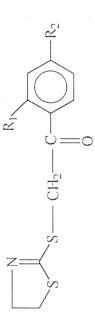
This compound was obtained by the reaction of 2- $(\alpha$ -chloroacetyl)phenol and 2-thiazoline -2-thiol

IR (KBr, cm⁻¹); 3437 (O-H), 1629 (C=O), 1576-1433 (C=N, C=C). ¹H-NMR (DMSO -d₆) (90 MHz) δ ppm; 3.50 (2H, t, C₅ protons of thiazoline), 4.00-4.30 (2H, t, C₄ protons of thiazoline), 4.90 (2H, s, COCH₂), 6.90-7.80 (3H, m, C₃, C₄ and C₅ aromatic protons), 7.80-8.00 (1H, d J=8.00 Hz, C₆ aromatic protons). FAB+ MS M+1: m/z: 254.

2-(2-Hydroxy-4-methylphenacylthio)thiazoline 5

2-(α-Chloroacetyl)-5-methylphenol and 2-thiazoline -2-thiol were used for the synthesis of this compound IR (KBr, cm⁻¹); 3408 (O-H), 1633 (C=O), 1572-1441 (C=N, C=C). 1 H-NMR (DMSO -d₆) (250 MHz) δ ppm; 2.30 (3H, s, CH₃), 3.50 (2H, t, C₅ protons of thiazoline), 4.10 (2H, t, C₄ protons of thiazoline), 4.80 (2H, s, COCH₂), 6.80-6.95 (2H, m, C₃ andC₅ aromatic protons), 7.80 (1H, d J=8.12 Hz, C₆ aromatic proton), 11.4 (1H, s, OH).

2-(2-Hydroxy-4-methoxyphenacylthio) thiazoline $\underline{6}$ 2-(α -Chloroacetyl)-5-methoxyphenol and 2-thiazoline -2-thiol were used for the synthesis of this compound IR (KBr, cm⁻¹); 3482 (O-H), 1623 (C=O), 1566-1439 (C=N, C=C). 1 H-NMR (DMSO -d₆) (250 MHz) δ ppm; 3.40 (2H, t, C₅ protons of thiazoline), 3.75 (3H, s, OCH₃), 4.05 (2H, t, C₄ protons of thiazoline), 4.75 (2H, s, COCH₂), 6.45 (1H, d J=2.3 Hz, C₃ aromatic proton), 6.50 (1H, dd J=8.90 Hz and J=2.4, 2.4 Hz C₅ aromatic proton), 7.85 (1H, d J=8.88 Hz C₆ aromatic proton), 11.85 (1H, s, OH).


Results and Discussion

The reaction of arylacylhalides with 2-thiazoline-2-thiol gave 2-(substituted arylacylthio)thiazoline derivatives.

The structures of the compounds were confirmed by IR, ¹H-NMR, FAB⁺-MS spectral data and elemental analyses.

The IR spectra of the compounds 4,5,6 showed characteristic broad O-H stretching

Table 1. Some Characteristics of Compounds

Elemental Analyses calc./found	Z	4.67 5.90	4.48 5.86	3.71 5.15	3.48 5.09	3.57 9.92	3.32 9.56	4.37 5.52	4.24 5.45	4.90 5.24		4.59 5.00	
Elementa	C	55.66	55.76	48.61	48.90	46.79	46.73	52.14	51.83	53.94	52 77	77.7	50.86
Molecular	Formula	C ₁₁ H ₁₁ NOS ₂	237.35	C ₁₁ H ₁₀ CINOS ₂	271.79	C11H10N2O3S2	282.34	C ₁₁ H ₁₁ NO ₂ S ₂	253.35	C ₁₂ H ₁₃ NO ₂ S ₂	75 770	10.101	C ₁₂ H ₁₃ NO ₃ S ₂
Yield	%	87		80		98		72		67		:	65
M.p. °C		56		78		88		122		64			87
R ₂		I		C	***************************************	NO ₂				CH3			OCH ₃
\mathbb{R}_{1}		H		H		I		0H		ОН			ОН
No				2		3		4		5			9

bands in the 3480-3400 cm⁻¹ region. The C=O stretching bands were observed at 1691, 1696 and 1685 cm⁻¹ for the compounds 1, 2 and 3 and at 1629, 1633 and 1623 cm⁻¹ for the compounds 4,5,6 respectively. The presence of the O-H group in the compounds 4,5,6 caused the stretching bands of C=O groups to shift to in lower frequences.

In the ¹H-NMR spectra of the compounds, C₅ and C₄ protons of thiazoline resonated at 3.40 and 4.05 ppm as triplets, respectively. The COCH₂ protons were observed as a singlet at 4.80 ppm. The O-H proton showed a singlet at about 11.4 ppm. All the other protons were observed in the expected regions.

References

- 1. Goddin, A.H., Searle, N.E.: U.S. 2, 516, 313, July 25, 1950. C.A. 45:810c.
- Mc Ginty, D.A., Bywater, W.G.: J. Pharmacol., 84, 342 (1945).
- 3. Mc Ginty, D.A., Bywater, W.G.: J.Pharmacol., 85, 129 (1945).

- 4. Stainley, M.M., Astwood, E.B.: Endocrinology, 41, 66 (1947).
- Mc. Ginty, D.A., Wilson, M.L.: Endocrinology, 44. 546 (1949).
- Gawron, O., Keil, J.: Arch. Biochem. Biophys., 89, 293 (1960), C.A.: 54: 24923h.
- 7. Kimball, A.W., Burnett, W.T., Doherty, D.G.: Radiation Research, 7, 1 (1957).
- 8. Handrick, G.R., Atkinson, E.R., Granchelli, F.E., Bruni, R.J.: J.Med. Chem., 8 (6), 762 (1965).
- 9. Cowper, R.N., Davidson, L.H.: Org. Synth. Col. Vol., 2,480 (1943).
- 10. Kröhnke, F.: Chem. Ber., 69B, 921 (1936)
- 11. Engler, C., Zielke, O.: Chem. Ber., 22, 203 (1889).
- 12. Fries, K., Pfaffendorf, W.: Chem. Ber., 43, 212 (1910)
- 13. Higginbotham, L., Steephen, H.: J. Chem. Soc., 117, 1534 (1920)
- Slater, W.K., Stephen, H.: J. Chem. Soc. 117, 309 (1920)
- 15. Bogolyubskii, V.A., Bogolyubskaya, L.T.: Khim. Geterotsikl. Soedin., (4), 647 (1967). C.A.: 68:78189s.

Accepted:04.02.1998