A NEW HALOGENATED C_{15} NON-TERPENOID COMPOUND FROM THE MARINE RED ALGA, LAURENCIA OBTUSA

KIRMIZI DENIZ YOSUNU LAURENCIA OBTUSA'DAN YENI BIR HALOJENLI C_{15} NON-TERPENOID MADDE

ZEYNEP AYDOĞMUŞ, SEDAT İMRE

University of Istanbul, Faculty of Pharmacy, Depratment of Analytical Chemistry, 34452 Istanbul, Turkey

Kırmızı deniz yosunu <u>Laurencia obtusa</u> Türk kıyılarında oldukça fazla dağılmış ve toplanan bölgeye ve zamana bağlı olarak değişen çok zengin halojenli sekonder metabolitlerin kaynağıdır. Bu çalışmada <u>Laurencia obtusa</u>'dan yeni bir $^{C}_{15}$ terpenoid olmayan asetilenik madde izole edildi ve yapısı spektroskopik metodlarla aydınlatıldı.

Anahtar Kelimeler: Laurencia obtusa; Kırmızı deniz yosunu; Deniz kaynaklı doğa madde

Introduction

The red marine alga *Laurencia obtusa* is widely distributed in Turkish waters and a rich source of halogenated secondary metabolites, which vary depending on the collecting region and season(1-3). In the present work we have isolated a new C₁₅ nonterpenoid acetylenic compound from *Laurencia obtusa* and its structure was deduced by spectroscopic methods.

Materials and Method

General procedure

Melting point was determined on a melting point microscope (Reichert) and was uncorrected. Optical rotation was measured with a warning polarimeter. The IR spectrum was obtained on a Perkin-Elmer 1600 FT-IR instrument as a film on a NaCl disk. Mass spectra were taken on AEI MS 30 and Kratos MS 50 (reagent gas for CI-MS: NH3). The ¹H and ¹³C NMR spectra were recorded on 360 and 90.5 MHz appartus respectively in CDCl₃, using TMS as internal standard. The following silica gels were used: silica gel GF₂₅₄ (Merck) for analytical (0.25 mm) and preparative (0.5 mm) TLC.

Extraction and Isolation

Laurancia obtusa was collected in April 1992 at Didim near Aydın, air-dried, and ground with a blender. Dried alga (460 g) was macerated with

CHCl₃/MeOH (2:1, v/v) to afford 25 g extract. The extract was chromatographed on a silica gel column (35-70 mesh; 4.6x45 cm) with petrol (50-75°C) and increasing amounts of Et₂O (v/v). The residue (1.6 g) from the combined fractions 103-120 (Et₂O) was further chromatographed on silica gel column (70-230 mesh; 1.5x25 cm) with CHCl₃, then subjected to prep. TLC with petrol/ether(1:1) and was chromatographed on a silica gel column (70/230 mesh; 1.5x15 cm) with ether to give pure compound 1 (96mg).

Compound 1

Colorless solid, m.p. 58-60°C. $[\alpha]_D^{25} = +36.67^{\circ}$ (c 0.54, MeOH); IR v_{max} (NaCl) 3287, 3025, 2919, 2849, 2361, 2095, 1735, 1459, 1374, 1240, 1053, 952, 850 cm⁻¹; 1 H and 13 C NMR (Table); MS m/z (rel. int.) Cl 355, 357 (100:99.3) [M⁺¹], 295, 297 (39.7:38.2) [M-CH₃CO₂H]⁺, 289, 291 (15:1:14.7) [M-C₅H₅]+, 233(12.8) [M-C₃H₆Br]⁺, 215 (73.9) [M-Br-CH₃CO₂H]⁺, 174(11.7)[M-CH₃CO₂H-C₃H₆Br]⁺, 107(43.4), 93(17.3).

Results and Discussion

The IR spectrum of compound 1 showed the presence of acetylene (3287, 2095 cm⁻¹) and ester carbonyl (1735 cm⁻¹) groups. Although, compound 1

failed to show a molecular ion in EI-MS, CI-MS showed [M+1]⁺ peaks at m/z 355, 357 with the intensities of 100:99.3 indicating the presence of one bromine atom. The molecular formula of C₁₇H₂₃BrO₃ was deduced from CI-MS spectrum, suggesting six degress of unsaturation and ¹³C NMR-DEPT spectrum [2xCH₃, 4xCH₂, BrCH, 3x OCH, 2x CH=CH, -C≡CH, CO]. The mass, ¹H NMR and spin decoupling experiments indicated the presence of a *cis* conjugated terminal enyne group [(m/z 289, 291 [M-C₅H₅]+; δ 3.13 (1H, d, J=2.1 Hz), 5.56 (1H, dd, J=

Table. ¹³C and ¹H NMR spetral data of compound

1		
Carbon No.	δC ^a	δH ^b (J, Hz)
1	82.38	3.13 d, 2.1
2	80.08	
3	110.89	5.56 dd, 10.8, 2.1
4	140.34	6.01 ddd, 10.8, 7.6, 7.6
5	34.28	2.51-2.69 m
6	72.70	4.09-4.15 m
7	74.99	4.91 ddd, 7.5, 1.5, 1.1
8	29.25	2.51-2.69 m 2.35 ddd, 14.2, 7.4, 2.7
9	127.10	5.76 dd, 10.4, 7.7
10	130.17	5.87 dd, 10.4, 7.7
11	30.49	2.51-2.69 m
12	79.59	3.99 ddd, 10.5, 7.6, 2.9
13	59.79	4.09-4.15 m
14	30.05	1.82 ddq, 15.1, 7.8, 7.8 2.20 dddd, 15.1, 7.2, 2.9
15	12.06	1.10 t, 7.2
16	170.74	
OAc	21.29	2.14 s

Assignments made by $^{1}H^{-1}H$ and $^{1}H^{-13}C$ COSY. Recorded in CDC₁₃ at $^{a}90.5$ MHz and $^{b}360$ MHz.

10.8, 2.1 Hz) and 6.01 (1H, ddd, J=10.8, 7.6, 7.6Hz)]. This was in agreement with the cis-configuration of the double bond in the enyne side chain of other related metabolites such as Z-dihydrorhodophytin 2(4), cis-pinnatifidenyne 3 (5). The mass spectrum also indicated a significant peak, [M-C₃H₆Br]⁺, sponding to fragmentation of CHBr-CH₂-CH₃ side chain. The NMR data (Table) also showed two additional vinly protons which was placed at C₉ and C₁₀ and the presence of an acetoxyl group attached to C₇. Detailed ¹H NMR spin decoupling experiments of 1 combined with ¹H-¹H and ¹H-¹³C COSY spectra led to of all protons for the straight carbon skeleton shown in fig 1.

Fig. 1

The complete structure of 1 was established from comparison of its NMR spectra with the previously described acetylenes: Z-dihydrorhodophytin 2(4), *cis*-pinnatifidenyne 3(5) and other similar natural compounds (1,2, 6,7, 11,12). The ¹H NMR coupling constant between H₆ and H₇ (J=1.1, 1.5) suggests that both H₆ and H₇ are equatorial (4).

Acta Pharmaceutica Turcica XLI (3) (93-95) 1999

Furthermore, the relative stereochemistry of the bromine atom at C_{13} was deduced to be β from comparison coupling constant of H_{13} H_{12} and H_{14} with those of previously published data (5, 12). Based on all these data, structure of compound 1 was proposed to be that of formula 1.

References

- 1. King, T.J., İmre, S., Öztunç, A., Thomson, R.H.: Tetrahedron lett. (16) 1453 (1979)
- 2. Falshaw, C.P., King, T.J., İmre, S., İslimyeli, S., Thomson, R.H.:Ibid. 21, 4951 (1981)
- 3. Imre, S., Aydoğmuş, Z.: Pharmazie 52, 883 (1997)
- 4. Norte, M., Fernandez, J.J., Cataldo, F., Gonzalez, A.G.: Phytochemistry 28, 647 (1989)
- Gonzalez, A.G., Martin, J.D., Martin, V.S., Norte, M., Pérez, R., Ruano, J.Z., Drexler, S.A., Clardy, J.: Tetrahedron 38(7) 1009 (1982)
- Irie, T., Suzuki, M., Masamune, T.: Ibid 24, 4193 (1968)

- 7. Murai, A., Murase, H., Matsue, H., Masamune, T.: Tetrahedron lett. (29) 2507 (1977)
- 8. Cameron, F., Cheung, K.K., Ferguson, G., Robertson, J.M.: J.Chem. Soc. (B) 559 (1969)
- Burton, J.W., Clark, J.S., Derrer, S., Stork, T.C., Bendall, J.G., Holmes, A.B.: J. Am. Chem. Soc. 119, 7483 (1997)
- 10. Bratz, M., Bullock, W.H., Overman, L.E., Takemoto, T.: Ibid. 117, 5958 (1995)
- 11. White, R.H., Hager, L.P.: Phytochemistry 17, 939 (1978)
- Notaro, G., Piccialli, V., Sica, D., Mayol, L.,
 Giordano, F.: J. Nat. Prod. 55 (5) 626 (1992)
- 13. Caccamese, S., Azzolina, R., Duesler, E.N., Paul, I.C., Rinehart, K.L. Jr.: Tetrahedron Lett. 21, 2299 (1980)
- 14. Brown, M.J., Harrison, T., Overman, L.E.: J. Am. Chem. Soc. 113, 5378 (1991)
- 15. Suzuki, T., Koizumi, K., Suzuki, M., Kurosawa, E.: Chemistry Lett. 1643 (1983)

Accepted: 10.12.1998