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Abstract

Tho purpose of this study was to develop Quantitative Structure Pharmacokinetic Relationship (QSPkR)

for selected Cox-2 inhibitors. Artificial neural network (AI.IN) was used for data pruning (leave one out

strategy) and prediction of pharmacokinetic and construct the QSPkR model from'molecular descriptors

that were generated using the TSAR, Codessa and Dragon computer programme. The final equation

estiınating Cl, Vd, tıl2' AUC and Tmax' all show good correlation but Vd,Cl and t|/2 shows significant

correlation (r: 0.9-0.7). This investigation will help in rationalizing the design of new molecrıle and allow
ınore rapid progression ofpotential drug candidates to the markets.

Key words: Quantitative structure pharmacokinetic relationship (QSPkR), artificial neural network,

pharııacokinetics, molecular modeling, descriptors.

Introduction

Knowledge of the pharmacokinetic properties is of critical importance for the understanding of
their mode of action and for the validation of activity and bioavailability. The recognition and

exploitation of the relationships between chemical structure and biological activity have risen

to the discipline known as Quantitative Structure Activity Relationship (QSAR). The hilarious

work of Hansch and co-workers in 1964 has started the new era of activity prediction from

Structuı'e. QSAR has been used to predict the optimum molecular structure and to provide a

lneans of undeıstanding their mechanisın of action and an important part of modern drug

discovery. Hansch used physicochemical properties and correlated with biological activity
using regression analysis. The result of treatment was an equation which describes in

quantitative malıner the relationship between biological compounds with its chemical structure

(Hansh etal. 1964,Glenetal.1987,Hydeetal. 1988,Lewisetal. 1990).Howevermuchless
study has been devoted to quantitative structure pharmacokinetic relationship (QSPkR) because

of limited use of substituent parameters as pioneered by Hansch and co-workers. The present

study is to compute the pharmacokinetic properties of limited numbers of compounds using

paraııeters which can be calculated or predicted and which do not require the compound to be

synthesized and experimental measurements made. We have attempted to investigate which

ınolecular descriptors are important in the pharmacokinetic prediction using the well known

data prrıning method Artificial Neural Network (A].IN).

Artificial neural network are computational systems implemented in software or hardware that
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attempt to simulate the neurological processing abilities of biological system particularly in
brain.

ANN contaiııs mainly tlı'ee layers (l) Input layet (2) Hidden layer (3) output layer. The layers
that receive input from environment is input layer. The output layer generates the dependent
variable and the hidden layer inter connect the input and output layer (Nestrov et al. 1999). It is
based on human bıain that in which neuron collect signal from other neurons or dendrites
(Doırdeti et al' 2003). When population pharmacokinetic data is analyzed using N9NMEM and
ANN, ANN show less predictive error than NONMEM (Chow et al. 1997). Neural network are
ınost suitable to model the behavior of complex pharmacokinetic and pharmacodynaııic study
(Veng-pedersen et al. 1993).In the present study an attempt is to make to determine whether
suclr an approach is possible. Modern drug discovery plogIammes particularly involve tlıe
syırtlresis and sequential firnctional group alteration of compounds aimed at producing specific
pharınacological effects with appropriate efficacy and pharmacokinetic properties in humans.
An important part in the generation of novel drug understands of how they are absorbed,
distribrıted, metabolized and excreted (ADME Studies). In contrast to the increasing compoıreırt
of design of drug discovery, there is still higher degree of empiricism used in optimizing
pharmacokinetic properties of the compounds. Much less efforts have been expended in
nrodelling tlıe pharııacokinetic properties. There is therefore a need to understand lıow
coırrbination of molecular physicochemical quantitativiely influences the pharmacokinetic
properties ofthe drug.

Human pharmacokinetic of a compound play a key role in determining the suitability of New
Clıeınical Entity (NCE) in further üug development. Sceening of ADME in vitro and from
aniııal ııodeling are time consuming and expensive (Norris et al. 2000). Even results can not
accurately effect tlıe pharmacokinetic of the compounds. Need of more accurate results and due
to financial pressuı'e, focus is on the research of molecular modeling (Walter et al. 1998).
Modeling provides a means to describe and understand data.

Methods

A c ti v i.ly/P h armacokineİ ic data

The valı"ıe of Total clearance (Cl), Half life 1t1/2;, Voıuıne of distribution (Vd), Time to maximal plasma
concentration (Tınax), Area under the curve (AUC) were obtained from the literature of following
therapeutic Non Steroidal anti inflammatory Drugs (NSAIDS): Celecoxib,Valdecoxib, Rofecoxibl
Etoricoxib, Lumirocoxib, Deracoxib (Paulson et aI.2000, Chan et al. 1999, Rodrigues et al. 2002) and
Drugs tuıder clinical trial: DUP-697 , SC-57666, SC-5845l, NS-398, ITE-522, SC-236, SC-58l25
(Futaki et al. 1993, Isakson etal.1994).

Molecular Modeling

The structures were sketched in the ISIS draw 2.4 (Standlone Software). The compounds were modeled
iııto 3-D with the help of IIYPERCHEM (Hypercube Inc.) and Corina modules' 3-D structure helps in
the coınputation of 3-D descriptors. Files were saved as. Hin file and. Mol file as extension file and used
as input file for the other software.

Gen.eratioıı of Molecular descripıors

The extension files .Hin file and. Mol files were imported into the TSAR 3.3 (Tool for structure activity
relationslıip, oxford Molecular Limited). These files were used as input file to calculate the molecular
descriptors. The descriptors which were calculated: Molecular weight (Mw), ınolecular surface area
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(SA), ınolar voltıme (MV) Inertia moment (IM)' Ellipsoidal volume (EV), Kier Chi (D' Kappa shape (rc),

slıape flexibility index (ıy) and topological index (G). The electronic descriptors Heat of Formation
GIEFO)' energy of lowest unoccupied molecular orbital (LUMO), energy of highest occupied molecı.ılar
orbital (HOMO), dipole moment (DIPO) and Ionization Potential (IOPO) were calculated using the
Vamp which is semi-emperical package of Mopac software with a time limit of around 30 min. Finally
lipophillic parameters (log P) were estimated by Hyperchem and Chem Sw (MM Plus). For evaluation
purposes, estimated log P values were compared with available experimental estimates of all the coxibs.
All the descriptors were cross checked by computing in other software (Codessa and Dragon).

G en eration of p harmacokinetic dqta

Artificial neural network programme used were the Statistica neural network 6.0 (Statsoft inc.) and
TSAR. All network of three layered feed forward back propagation (Multilayer perceptron) type,
containing bias neurons in each layer and single neurons in output layer. Sigmoidal transfer function was
eınployed in all neurons and weight adjustment was perforıned according to generalized delta rule
(Kaınperınan et al. 2001). Connection weights were initialized with random values. Models were
constructed using the training set of compounds. The validation subsets were used to provide an
indication of ınodel performance. All generated descriptors were included in initial ınodel. Redundant
descriptors were then pruned and systems were retrained until optiınuıı ınodel was achieved. True
predictive ability was assessed using testing subset of compounds.

Statistical analysis

The data was analyzed by using software Instat (Graphpad software Inc.) Stepwise regression analysis
was used to deterınine the ınost sigrıificant descriptors. The regression coeffıcient was obtained by multi-
linear regression analysis. For each regression analysis following descriptors-inforınation was obtained:
Number of observations used in the analysis (n), Square of Correlation (r2); Correlation coefficient,
standard error of estimate (S) and Fisher's criterion (F).

Result

A summary of activity and pharmacokinetic parameter values were used to develope the

QSAR/QSPkR modelsis shown in Table 1.

Table 1. QSAR/QSPkR modelsis

PK propeıties Celecoxib
(Cele)

Valdecoxib
(Val)

Deracoxib
(Dera)

Rofecoxib
(Rofe)

Lumirocoxib
(Lumi)

Etoricoxib
(Etori)

Tmaxftr) J J 2 1.0 2 2

AUC(nglhr/ml) 705 t479 401 8 3286 t872 300
Vd(L) 400 86 9r 108 90 1.5

C1(L/hr 27.7 6 t4l 57 5.6 5

Tl/2(hr) 8 ll t7 22 3 t9

Pharmacokinetic data obtained from literature

There is change in molecular structure and results in significant variability in activity/PK
clraracteristics. For example tl/2 value ranges from 3 h to 22 h for the selected compounds.

Similarly other pharmacokinetic properties also demonstrate considerable variability. The large

range of values in each property make this data well suited for QSAR/QSPkR analysis. The

calculated physicochemical descriptors, obtained by molecular modeling in TSAR, Dragon and

Codessa are listed in Table 2,3 and 4.

l.
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Data analysis

The çorrelation matrix ana|yzed the descriptors and those showing good correlation (0'9, 0.8,
0.7) taken first for training artificial neural network.

Training and validation

All the descriptors generated were used to train the ANN, after this pruning was implemented.
It is done manually or automatically large number of descriptors were removed in each cycle
and root mean square (RMS) was calculated each time. RMS is a measure of performance. The
clearance and Vd show less RMS error so these were good candidates for further analysis
(Table 5 and 6).

The output calculated each time and difference between actual and observed called error was
propagated back to adjust the strengths ofthe connections or weights. Each iteration is called
epochs. Number of maximum iteration in this study was 50,00,000. It is simply leave one out
strategy. The final QSPkR equations along with their respective F probability, coefficient of
regression (r), coefficient of determination (r2). values were reported in Table 7,

Tlıese relationships all appear to show significant correlation (R ranges from 0.8 to 0.7) and
good predictive performance. The lipopillic parameter, shape index were advantageous since
these were highly correlated with each other. Shape index parameters emerged as the primary
determinant of the variability in area under curve, clearance, half life, Tmax and were also
significant factors in volume of distribution (Vd). For Vd, lipophillic factors were common
descriptors that appear to explain their broad range of values. Graphs showing observed versus
predicted values for the pharmacokinetic parameters are shown in Figure 2 and all demonstrate
good agreement about the line of identity.
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Table 2. List of descriptors obtained from TSAR, Codessa and Dragon.

List of descriptors obtained by TSA& Codessa and Dragon
\ı

Kier chil
(bonds)
Index(y1)
12.0s4
10.465
10.465
11.342
11.O97

9.4692
10.M9
10.842
1 1.363
9.8492
10.449
12.054
12.054
12.054

ı 5.409
14.210

Kier chi V0
(atoms)
Index(vvO)
14.409
12.736
12_982

14.893
12.210
ı l.600
13.226
15.473
14.433
12.624
13.643
14.605

Kier chi0
(atoms)
Index(v0)
19. 1 l3
15.742
15.742
17.320
16.39'7

14.698
15.742
16.613
16.949
15.458
15.742
l9. r l3
19. r l3
19. r 13

90.739
93.556
87.747

Molar
refractivity
(MR)
90.975
84.707
83.299
95.ı04
79.566
75.619
86.847
96.s41
94.068
77.9t4
84.750

12.55

9.7086
5.7495
6s922
4.8322
3.8567
7.643
10.792
7.2136
7.0673
6.2711
13.348
r 3.61
12.501

Total
lipole(TL)

4.4332
3.9145
3.747
4.425
4.006
2.0998
2.5661
4.3027
4.5765
4.5495

Log p

4.2s19
2.8535
2.551l
3.5031829.26

812.06
31 1.35
580.26
96 r.85
566.t4
341.58
755.89
590. l 3

636.07
837.59

Ellipsoidal
voluıne
(EV)
l3'74.7
739.04
974;76

Inertia
moment
(IM)
308.91

174.42
149.69
270.78
208.9
115.77
183.5ı
304.70
272.96
232.81
178.59
4tl.z2
591.94
326.97

145.46

Moleculaı
volume(mv)

197.29
167.6'7

t71.43
186.45
ı 80.4l

175.t2
186.18
r94.05
175.M
185.26
r98.86
201.56
196.45

282.81
246.68
246.22
251.99
260.06
207.78
252.84
262.27
280;76
241.19
264.88
279.76
280.96
280.01

Molecular
surface
area(SA)

446.26

381.4
314.38
316.39
358.86
3l 8.32
293.74
316.41
41 1.31

342.45
3t4.39
320.M
40r.8r

384.37

Molecular
mass(MW)

Ns-398
Jte-522
Sc-236
Sc-558
Sc-58125

Name of
molecule

Celecoxib
Valdecoxib
Rofecoxib
Etoricoxib
Deracoxib
Lumiracoxib
Sc-57666
Dun-697
Sc-58451

I

3

4.
5

6.
7

8.

9.
10.

11

t2
13.
14.

S.No

polarity

4.83
3.92
9.97
7.s6
4.72
7.16
2.7s
8.r9
2.93
4.91
7.40
4.74
10.64

ı 0.7l

Wiener
topological
index
1654
1057
1061

ı351
I 159
840
1099
1219
r 340
936
106'7

I 654
1543
ı 678

Balban
topological
index
1-6693
1.5973
I .6051
1.6243
1.6732
1.8855
t.s476
1.58t 6
1.4053
1.9677
ı.5867
1.6693
1.5674
1.0970

Randic
topological
index
12.054
10.465
t0.654
11342
l1.097
9.4692
10.449
10.M2
l1.363
9.8492
10.M9
11.234
10.231
12.'789

I(Alpha
3 index

4.0296
3.0232
2.9863
3.9833
3.l85ı
3.6424
3.1454
3.5948
2.7243
4.850
3.4743
4.146
4.2231
4.01'77

KAlpha2
index

6.57t3
5.7230
5.6646
6.8r 84
6.6048
6.1343
s.68'19
6.2619
5.2808
6.6087
6. I 855
5_',?360

6.8446
6.5543

Kappa 3
index

4.8994
3.7351
4.7456
4.6012
3.9837
4.4963
3-9256
4. I 588
3.3600
5.6055
3.9256
4.7896
3.56'74
4.92'72

Ikppa 2
index

7.788
6.857r
6.5281
7.7091
7.9213
7.3199
6_3451

7.0869
6.3017
7.5130
6.3434
'1 .'7921

7.8976
7.4536

Kappal
index

20.727
16.U4
16.844
18.781

r7.8r I

16.3'72

16.U4
17.81 I

17.416
17.355
16.844
21.7'72

l 8.899
19.123

Kier chi3
(cluster) index

3.9149
2.3266
2.3266
2.6932
1.5079
1.6222
2.4Ms
2.6932
3.llt6
2.598 ı
2.4M5
2.9149
3.9149
ı.9148

Kier chi
v2(path)

7.4174
6.5859
7.6454
8. I 856
4.85r 8

4.8737
7.7934
9.8750
9.2934
7.080
7.5397
7.530 r

7.9948
7.'7766

Kier chi
2 (path)
index
12.860
10.172
10.172
11.342
9.992
8.831

10.256
10.902
11.734
9.84r 8
ı 0.280
1 2.860
ı 2.860
r 2.860

Kier chi
vl(bonds)

9.1028
8.2873
9.0272
9.6886
6.8734
6.4035
9.2'194
10.441
I 0.194
8.8237
9.2269
9.200,4
9.6028
9.33'74

S.No.

I

2.
3.

4.
5_

6.

7
8.

9.

10.

I l.
12.
t3
14.
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Table 4. List of electronic descriptors obtained by üe Vamp modules.

Table 5, 6. Showing the training and architecture of the data.

Table 7. Cox-2 inhibitors eSpkR (best correlated) equations.

RMS error
Root mean

52-tt-l 0.5
7-l 0.4

Vd t7-5-l 0.5
0.08

I 0.02

VAMP total
dipole
8. l 386
3.6t29
4.4254
3.5664
3.3352

3. l95s
3.1817
2.76t

VAMP HOMO

-9.8269
-9.6482
-9.951 I

-9.5112
-9.0572

-9.833
-9.8s64
-9.846s

VAMP Nuclear
energy
29265
2t577
22991
24524
23477
l 8870

29139
29071
26754

VAMP LUMO

-1.2021
-0.987 52
-0.94579
-1.2078
-0.54826
-0.38 I 96
-1.0314
-ı. l l99
-1.0054
-1.3269
- r.0814
-1.387 I

-1.4038
-1.4204

VAMP Ionization
potential
9. 8269
9.6482
9.9511
9.5lL2
9.0572
8.57
9.0215
9.4145
8.9932
9.7 59
9. r63 I
9.8233
.85&

9.

VAMP Heat of
formation

il6
t9.46
-89.3

24.442
-52.048

I

-53.325
-24.824
-23.139
-99.988
-68.484
-98. I 55

VAMP total energy

-5278.6
-3807.2
-3871 .6
4131.9
4542.3
-3806.4
-38s7.6

4t40.1
411 7
-3893
-5482.7
-5462.2
-5528.3

S. No.

2.
3.

4.

5
6
7
8

t0
1t
t2
t3
I4

Architecture RMS error
Root mean

52-2-l 0.36
28-2-l 0.18
ı3-1-l 0.44
9-1-1 0.08
5-1-r

Clearance

R2
0.77

0.65
0.53

Clearance
R

Cl= I 70.22 K I I 2 2 5* A+7 30 I 0.921
Vd Vd=0. 005 *HOF+o .07+0.36*lOP_ 67 0.8s2

IT T .0 t4*EP+ç.048* +3.03LP-3. 76 0.7 t6

)-
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Fİgure 1. Comparisons of actual vs observed pharmacokinetic parameters (best correlated) with the line of

identity (dashed line).

Discussion

NSAIDS are important agent for the treatment of acute and chronic inflammatory disorder such

as osteoarthritis and rheumatoid arthritis. The chronic use of these agents is often limited by some

conımon side effects .like gastrointestinal hemorrhage and ulceration (Silkari et al. 2001).

Selective Cox-Z inhibitors are more advantageous tlıan conventional NSAIDS (Wilkerson et al.

t995). Then Silkari et al. studied üe QSAR analysis of cyclooxygenase-2 inhibitory activity.

However, activity alone cannot predict whether a compound is suitable for further development.

Subsequent pharmacokinetic studies may determine that most active or potent agent has an

unfavorable in vivo time course of drug concentration or response. Thus, QSAR analysis rnay

serve to guide fiırther drug development, while our current understanding of primary determinants

of cox-2 inhibitors pharmacokinetics.

In present study QSPkR models have been developed based on molecular properties obtained

fi.om calculations of molecular quantum mechanics. MLR are used to arrive at the primary

property determinants with minimal number of independent variables or descriptors. In this

manneı., most molecular properties are identifıed, giving direction for structrıral optimization and
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a basis for understanding fundamental of pharmacokinetic of the drugs. The equations finally
drawn from this study are advantageous however, one must always be having knowledge of
limitations of QSAWQSPKR modeling (Hansch et al. 1964) and main is linear regression. First a

sınall number of compounds were included. Atificial network has been used to avoid tlre
problems. First only a small number of compounds were included and molecular descriptors were
obtained previously used to train the network. Firstly the data was tı'ained with available
plıarmacokinetic parameters and this is called trained data, when RMS become constant then
stops training. After training of network, test data was used and calculated the values of
reııaining pharmacokinetic parameters. In this entire data was selected as single identity and a set
was chosen randomly at each iteration. Snıall numbers of compounds were replaced and a new
diversity va1ue was computed. Final the QSPkR equations should be devoid of highly cörrelated
descriptors to avoid chance correlations and to improve the significance of the resulting
relationships. This limitation has been avoided for all parameters.

One of the most important considerations in establishing and interpreting QSAR/QSPkR models
is the nature of activity/pharmacokinetic parameters. Although parameters may be carefully
selected to represent the most typical values, issue related to inter and intra subject variability and
nonlinear parameters can not be considered. For example complex pharmacokinetic behaviour
arising fronı the plasma protein binding and metabolism. Celecoxib pharmacokinetii paranreters

can also be affected by gender (Paulson et al. 2000) and pathophysiological conditions, but in
case of valdeçoxib it is not affected by gender difference. The parameter values for this study
were chosen from selected pharmacokinetic reviews that represent the most typical values in
healthy subjects, as well as those resulting from low doses so that the complexities introduced by
dose dependent pharmacokinetic phenomena could be kept minimum so artificial neural network
has been used. ANN is valuable and robust tool for development and drug discovery. The utility
of ANN in pharmaceutics was demonstrated by successful construction of a number of QSPkR.
They have been shown to be fast and reliable method for the prediction of human
plrarııacokinetic parameters. ANNs have the potential to aid in drug discovery and development
by providing a tool to complement existing screening techniques. It is not proposed that ANN
will replace current in vitro and in vivo screen tools. Rather if they are appropriately incorporated
into overall drug design and development process they provide considerable savings in resources
and allow more rapid progression of potential drug candidates to the markets The results
demonstrate that ANNs provide a valuable modeling tool that may be useful in drug discovery
and development.
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