Role of some fermentation parameters affecting lipase production by
Fusarium solani

M.S. Shafei and I.S. Abd-Elsalam

Natural and Microbial Products Chemistry Department, National Research
Center (NRC), Dokki, Cairo, Egypt

Abstract

The lipase production by *F. Solani* was investigated on using shaking flask and laboratory stirred
fermenter. The results indicated that the best yield 380 U/ml (specific enzyme activity 9.04 U/mg protein)
was obtained by using Erlenmeyer flask 250 ml containing 50 ml of culture with a medium composition
(g%): Sucrose 2, corn oil 0.2 ml, MgSO₄·7H₂O 0.05, KCl 0.05, KH₂PO₄ 0.1, (NH₄)₂SO₄ 0.23, at pH 6.2
using citrate phosphate buffer and inoculum size 6 ml/50 ml medium. However, on using a bench top
fermenter 5 L, the yield was increased by about one and half fold (520U/ml) under optimized
fermentation conditions.

Keyword: Lipase production, *F. Solani*

Introduction

Lipases (triglycerol ester hydrolase) are enzymes which catalyze the hydrolysis of fats to
produce monoglycerides, diglycerides, free fatty acid and glycerol. With the rapid development
of enzyme technology a considerable attention has been focused on the biotechnological
application of lipases to fats and oil industry (Macrae and Hammond, 1985).

Lipolytic enzymes have an increasing use in food & detergent industries. Recently, their role in
paper & pulp manufacture has been emphasized (Fujita et al., 1992; Hate et al., 1996). Furthermore,
lipases are used in the manufacturing of monoacyl-glycerols which are widely
used as emulsifiers in food of dairy industry, pharmaceutics, cosmetic industries as well as hair
care additives (Bornscheure, 1995).

Although, lipases occur in animals, plants and microorganisms, microbial lipases have a broad
spectrum of industrial application, since they are more stable compared with plant and animal
lipases and they can be obtained cheaply.

The lipases from *Candida rugosa* (Kong and Rhee, 1989, *Geohrichun candidum* (Hedrich et al.,
1991). *Aspergillus niger* (Ellaih et al., 2004) and *Mucor sp.* (Abbas et al., 2002) have been
used successfully in industrial applications and lipase from *Candida rugosa* is commercially
available (Sonnet and Gazzillo, 1994). However the industrial demand for highly active
preparations of lipolytic enzymes continues to stimulate the search for new enzyme sources
(Lee and Rhee, 1993).
The lipases production are dependent on several environmental factors such as cultivation temperature (Maliszewska and Mastalerz, 1992; Berto et al., 1997; Chattopadhyay et al., 1999) pH of the growth medium (Chopra and Chander, 1983; Chen et al., 1998) incubation period (Beruil and Kusher, 1975; Chattopadhyay et al., 1999) as well as inoculum size (Elwan et al., 1985).

The goal of the present work is to optimize the lipase production by Fusarium solani as well as studying the production process under controlled fermentation condition using 5 liter laboratory fermenter.

Materials and Methods

Materials

Microorganism
The strain of Fusarium solani was kindly obtained from Natural and Microbial Products Chemistry Dept., National Research Center, Dokki, Cairo, Egypt.

Chemicals
All the chemicals used in the current work were laboratory reagents purchased from Merck and all the organic solvents were HPLC grade.

Methods

Maintenance of the microorganism
The culture used in the current work was a descendant from a single slant of the pure culture. The stock culture was maintained on agar slopes of the following, medium (w/v) (Oxoid, 1982) glucose 2, NaNO3 0.2, KCL 0.05, KH2PO4 0.1, MgSO4.7H2O 0.05, FeSO4.7H2O 0.005 and agar 2. The pH was initially adjusted to 6.8. The slant culture was stored in a refrigerator with regular transfer every month.

Inoculum preparation
The spore suspension of the experimental organism was prepared by adding 6 ml sterile distilled water into 6 days old slant culture and scratched with a sterile inoculated needle. Erlenmeyer flasks 250 ml containing sterile 100 ml of cultivation medium was inoculated by 5 ml of previously prepared spore suspension (8.2x10^7 spore/ml.). According to Elwan et al. (1986) the cultivation medium has the following composition g/l: sucrose 2, corn oil 0.2, MgSO4.7H2O 0.05, KCL 0.05, KH2PO4 0.1, (NH4)2SO4 0.23. The ratio of gum arabic to corn oil is 1:1 and the pH was adjusted to 5.4 using citrate phosphate buffer (0.1 M). Growth was continued at 200 rpm 30 ± 1°C for 72 h.
Preparation of triglyceride

According to the method described by Starr (1941) 10 % (v/v) of the triglycerides (olive oil) emulsified in 10% (w/v) gum arabic in hot water and homogenized in a top drive homogenizer for 10 min to form an emulsion of triglyceride used.

Determination of the lipolytic activity (Parry et al., 1966)

A suitable volume (1ml) of the culture filtrate was mixed with 2.5 ml of deionized water and the pH was adjusted to 7.7 1 ml of 0.1 Tris-HCl buffer (pH 7.7) and 3 ml of 10% (v/v) triglyceride emulsion prepared in 10% (w/v) gum arabic by homogenizing in top drive homogenizer for 10 min were then added. The mixture was incubated for 2 h at 37°C in shaking water bath after which 10 ml of 99% acetone (absolute) was added. The resulting mixture was then titrated against 0.05 N NaOH using thymolphthalein indicator. It should be noted that NaOH is previously standardized against standard 0.05 N HCl using phenolphthaleine indicator. Blanks, obtained on using boiled enzyme samples and the activities were obtained in terms of U/ml of enzyme solution. The lipase unit was defined as that produces 1 µmol of free fatty acids under assayed conditions.

Protein estimation

The protein content of the enzyme preparations was determined according to the method described by Lowry et al. (1951).

Biomass estimation

The mycelial biomass obtained after growth, was separated by filtration washed by distilled water and dried. It was dried in an oven 90°C and reweighed till constant weight.

Bioreactor studies

The fermentation process was achieved by using 5 L laboratory fermenter (B. Braun, Biotech international micro DUC-200). The production process carried out as follow, sterile 3 L of the growth medium (Elwan et al., 1986) medium, was inoculated by the tested microorganism as 6 ml/50 ml medium. The growth was continued at temperature 30°C, dissolved oxygen 1 v/v/min and the stirred speed was controlled at 600 rpm to maintain DOT above 20%.

Results and Discussion

Since, the constitution of the fermentation medium clearly affected on the lipase production, the study started by investigating the effect of four different nutritive media on lipase production. The results in Table 1 represent the different media used. The best lipase activity 200 U/ml was obtained on using the fermentation medium reported by Elwan et al. (1986a), where this medium was characterized by containing 0.2 corn oil. However, the medium of Tamerler and Keshavarz (2000), which contains rapeseed oil 1.25, showed a considerable lipase activity 150 U/ml.
It is clearly obvious that the media which contained oils showed greater lipase production. This may be attributed to that corn oil and rapeseed oil were used as inducer in the fermentation process (Elwan et al., 1986; Elibol and Ozer, 2000). Also, Kanwar et al. (2002) reported that the addition of tributyrin at concentration 0.05 % (v/v) to the culture medium enhanced the lipase production by 2.4 folds.

The results presented in Fig 1 showed the time course of lipase production by the experimental microorganism. It is clearly indicated that the best lipase activity (250 U/ml) was obtained at 72 h of incubation. These results are in accordance with the concept that the production of enzymes is advantageous to the microorganism only when nutrients become limiting i.e. during the late logarithmic phase or early stationary phase (Lee and Rhee, 1993).

On the other hand, Maia et al. (2001) found that the maximum specific lipase activity was obtained at 96 h cultivation using F.solani. Similarly, Ellaiah et al. (2004) found that the 96 h cultivation period was the best for lipase production using Aspergillus niger.

The effect of different inoculum size of F.solani on lipase production was studied and the results are shown in Fig 2. The lipase production by the experimental microorganism increased on increasing the inoculum size until it reached 290 U/ml at 6 ml inoculum size (8.2 x 10^7 spore/ml). As the inoculum increased above 6 ml a sharp decrease in the activity is recorded (180 U/ml at 10 ml). These results are in accordance with that obtained by Elwan et al. (1986); Mohawed, (1990). Also Chattopadhyay et al. (1999) found that the best concentration of spore suspension was 8 x 10^4 spres/ml.

With regard to the effect of different buffers values of the fermentation medium on lipase production (Table 2), two buffers were used to adjust the fermentation medium for lipase production to the specific pH values, Citrate phosphate (pH 3.5-7.0) and phosphate buffer (pH 6.0-8.0). It is clear that the optimum pH for lipase production by F.solani was 6.2 using citrate phosphate buffer (0.1M). Lipase production was found to be sensitive to narrow changes in pH value. Higher acidity or alkalinity resulted in decrease in lipase productivity by nearly 55% and 25% respectively. Similar results were found by El-Negar and Mohawed (1990) where the optimum pH was 5.6 using A.sydowi.

Mecki et al. (1994) found on determining the effect of pH the production medium, both lipase productivities and mycelial dry weight by four tested fungus were pH 5.5 for Thermascus lonuginosus, and pH 6.0 for Sportichum thermophilum and pH 6.5 for Aspergillus fumigatus. Bertro et al. (1997) found also that best pH was 5.5 for Alternaria brassicicola. Generally the optimum pH for microbial lipases in the range of 6.0-9.0 (Fox and Stephaniak, 1983).

The effect of addition of oils and fat compounds to oil-free medium was studied. In the course of study, results in Table 3 indicated that F.solani lipases were constitutive. The results showed that maximum lipase activity 350 U/ml (specific enzyme activity 8.50 U/ml protein) as well as the best growth of the microorganism was also exhibited on adding corn oil 0.2 % to the production medium. Corn oil was followed by olive oil and tween 80 where lipase activity and specific enzyme activity were 270 U/ml, 255 U/ml and 7.48 U/mg protein, 6.82 U/mg protein respectively. On the other hand, reduced levels have been obtained on using Tween 20, Tween 40 (150%175 U/ml). The discrepancy of being constitutive or inductive is in favour of the claim and that a fixed property for lipases is unlikely, the property is somewhat arbitrary, depending on growth conditions (Davies, 1964; Elwan et al., 1986). Similar results were obtained by Elwan et al. (1986b) on using A.sydowi grown on corn oil medium, Elibol and Ozer (2000) on
using *Rhizopus arrhizus* grown also on corn oil medium (Mohawed, 1990) found that the presence of corn oil was the best oil lipase production from *Pencillium aurantiogriseum* and *Alternaria alternate*. Olive oil shown to be the best additive by Mahadik et al. (2002) and Ellaiah et al. (2004) when *Aspergillus niger* was studied for lipase production.

In addition, the strength of tested microorganism lipase to hydrolyze different oil were tested. From Table 4, it is evident that degree of hydrolysis was proportional to the number of carbon atoms and the presence of double bonds. Thus, *F. solani* lipase hydrolyzed corn oil showing lipase activity 380 U/ml followed by olive oil of lipase activity 350 U/ml. This may be attributed to the ratio of unsaturated fatty acids in these oils is greater than that of saturated fatty acid. Corn oil contains approximately 86% unsaturated fatty acids while olive oil 89% unsaturated fatty acids. On the other hand rapeseed oil contains 27% unsaturated fatty acids.

The study extended to investigate the lipase activity on using bench top fermenter 5 L under the optimum fermentation conditions. The results presented in Fig 3 showed that the maximum lipase activity 520 U/ml was obtained at 96 h growth period, 1 v/v/min aeration and 6 ml/50 ml medium inoculum size a temp 30°C. As the growth period increased a considerable decrease in lipase activity was noticed which may be due to nutrient limitation and the cells reached the decline phase.

The above results showed that, the laboratory fermentation is more suitable for fermentation process, since the growth conditions were controlled as well as the priority of using controlled fermentation condition by laboratory fermentor, than shaking flasks.

Conclusion

The present study clearly indicated that the lipase productivity depended on same physiological and fermentation parameter such as, growth period, pH, inoculum size as well as oxygen requirement. The best yield was obtained on using fermentation medium containing corn oil 0.2 %, growth time 96 h, pH 7.5, inoculum size 6ml / 100ml medium.
Table 1: Effect of different medium on lipase production by *F. solani*

<table>
<thead>
<tr>
<th>Fermentation Medium</th>
<th>Lipase activity U/ml</th>
<th>Cell dry wt g/100 ml</th>
<th>S.E.A. U/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>3.45</td>
<td>5.55</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>2.88</td>
<td>2.08</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>3.01</td>
<td>2.77</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>3.25</td>
<td>4.16</td>
</tr>
</tbody>
</table>

S.E.A: specific enzyme activity

Medium 1: g % (Elwan et al., 1986a)
Sucrose 2, corn oil 0.2, MgSO₄·7H₂O 0.05, KCl 0.05, KH₂PO₄ 0.1, (NH₄)₂SO₄ 0.232.

Medium 2: g % (Elwan et al., 1986b)
Sucrose 2, NaNO₃ 0.2, KH₂PO₄ 0.1, MgSO₄·7H₂O 0.05, FeSO₄·7H₂O traces, KCl 0.05, pH 6.2

Medium 3: g % (Elwan et al., 1986c)
Cotton seed oil 0.5, NaNO₃ 2, KH₂PO₄ 0.1, MgSO₄·7H₂O 0.05, KCl 0.05, FeSO₄·7H₂O, yeast extract 0.3.

Medium 4: g % (Tamerler and Keshavarz, 2000)
NaH₂PO₄ 1.2, KH₂PO₄ 0.2, CaCl₂·2H₂O 0.033, MgSO₄·7H₂O 0.03, ZnSO₄·7H₂O 0.03, MnSO₄·4H₂O 0.0012, FeSO₄·7H₂O 500 μg, rape seed oil 1.25 cm³ (w/v), yeast extract 2.0.
Fig 1: Effect of different incubation periods on lipase production by
F. solani

Medium (Elwan et al., 1986a) g %
Sucrose 2, corn oil 0.2, MgSO₄·7H₂O 0.05, KCl 0.05, KH₂PO₄ 0.1,
(NH₄)₂SO₄ 0.2) pH 5.4 using citrate-phosphate buffer 0.1M.
Fig 2: Effect of different inoculum size lipase production by
F. solani

Medium (Elwan *et al.*, 1986a) pH 5.4 using citrate-phosphate buffer 0.1 M at 72 h incubation
Table 2: Effect of different pH values of fermentation medium on lipase production using *F. solani*

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Initial pH</th>
<th>Final pH</th>
<th>Lipase activity U/ml</th>
<th>Cell dry wt mg/ml</th>
<th>S.E.A. U/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrate phosphate</td>
<td>3.5</td>
<td>5.38</td>
<td>160</td>
<td>3.65</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td>6.60</td>
<td>290</td>
<td>4.20</td>
<td>7.04</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>6.80</td>
<td>350</td>
<td>4.68</td>
<td>8.50</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>7.50</td>
<td>320</td>
<td>4.45</td>
<td>7.85</td>
</tr>
<tr>
<td>Phosphate</td>
<td>6.0</td>
<td>6.65</td>
<td>300</td>
<td>4.55</td>
<td>7.36</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>7.20</td>
<td>330</td>
<td>4.81</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>8.10</td>
<td>285</td>
<td>4.23</td>
<td>5.50</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>8.30</td>
<td>240</td>
<td>3.95</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Citrate phosphate (0.1M) 3.5-7.0
Phosphate (0.1M) buffer 6.0-8.0
Table 3: Effect of different oils and dispersed agents on the lipase production using *F. solani*.

<table>
<thead>
<tr>
<th>Different oils & dispersal agent</th>
<th>Lipase activity U/ml</th>
<th>Cell dry wt Mg/ml</th>
<th>S.E.A U/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>95</td>
<td>2.94</td>
<td>2.08</td>
</tr>
<tr>
<td>corn oil</td>
<td>250</td>
<td>3.90</td>
<td>6.93</td>
</tr>
<tr>
<td>olive oil</td>
<td>210</td>
<td>3.10</td>
<td>4.6</td>
</tr>
<tr>
<td>sun flower oil</td>
<td>175</td>
<td>2.98</td>
<td>3.83</td>
</tr>
<tr>
<td>cotton seed oil</td>
<td>190</td>
<td>3.00</td>
<td>4.16</td>
</tr>
<tr>
<td>Tween 20</td>
<td>150</td>
<td>2.82</td>
<td>3.28</td>
</tr>
<tr>
<td>Tween 40</td>
<td>240</td>
<td>3.77</td>
<td>5.26</td>
</tr>
<tr>
<td>Tween 80</td>
<td>200</td>
<td>3.04</td>
<td>4.38</td>
</tr>
</tbody>
</table>

Using 0.1 M Citrate phosphate buffer pH 6.
Table 4: Effect of lipase activity produced by *F. solani* on hydrolysis of different oils

<table>
<thead>
<tr>
<th>Different oils</th>
<th>Final pH</th>
<th>Lipase activity U/ml</th>
<th>Cell dry wt mg/ml</th>
<th>S.E.A. U/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive</td>
<td>7.55</td>
<td>350</td>
<td>4.68</td>
<td>8.50</td>
</tr>
<tr>
<td>Cotton</td>
<td>7.59</td>
<td>340</td>
<td>4.60</td>
<td>8.13</td>
</tr>
<tr>
<td>Corn</td>
<td>7.59</td>
<td>380</td>
<td>4.65</td>
<td>9.04</td>
</tr>
<tr>
<td>Sesame</td>
<td>7.61</td>
<td>250</td>
<td>4.50</td>
<td>5.40</td>
</tr>
<tr>
<td>Rape seed</td>
<td>7.63</td>
<td>218</td>
<td>4.55</td>
<td>4.15</td>
</tr>
</tbody>
</table>
Fig (3) Lipase production by *F. solani* using laboratory fermentor
References

Received: 10.6.2005
Accepted: 10.9.2005