Investigation of the Anti-inflammatory, Hypoglycemic Activity and Median Lethal Dose (LD$_{50}$) Level of Limonene in Mice and Rats

Betül Sever Yılmaz1, Hanefi Özbek2

1Ankara University, School of Pharmacy, Department of Pharmacognosy, Ankara, Turkey
2Istanbul Medipol University, School of Medicine, Department of Medical Pharmacology, Istanbul, Turkey

ABSTRACT

The aim of this study is to investigate the anti-inflammatory, hypoglycemic activity and median lethal lose (LD$_{50}$) level of limonene mice and rats. Lethal dose levels were investigated using the probit analysis method. For the measurement of anti-inflammatory activity, seven separate work groups were established and limonene was administered in three different doses 0.15, 0.30, 0.60 mL/kg. Indomethacin and etodolac were used as reference anti-inflammatory agents. For the evaluation of hypoglycemic activity, 6 separate work groups, consisting of healthy and diabetic mice were established and glibenclamide was used as the reference agent.

The LD$_{50}$ level of limonene was determined to be 2.77 mL/kg. It is determined that all administered dosages of limonene possess anti-inflammatory activity; among these, 0.30 mL/kg was equivalent to indomethacin, and the remaining dosages were equivalent to etodolac. No hypoglycemic activity of limonene was observed in healthy and diabetic mice.

As a consequence, it is concluded that limonene did not show hypoglycemic activity, but possessed a strong anti-inflammatory activity.

Keywords: Limonene, anti-inflammatory activity, hypoglycemic activity, median lethal dose, rats, mice.

INTRODUCTION

Foeniculum vulgare Miller, (fennel) (Umbelliferae) is an annual, biennial or perennial aromatic herb, depending on the variety, and has been known since antiquity in Europe and Asia Minor. The leaves, stalks and seeds (fruits) of the plant are edible1. Extracts of the *Foeniculum vulgare* Miller (fennel) seeds are used in traditional Turkish medicine as an anti-inflammatory agent 2. The anti-inflammatory, hypoglycemic and hepatoprotective effects of fennel were
demonstrated by our previous scientific studies. The volatile components of subsequent fennel seed extracts determined by chromatographic analysis contain trans-anethole, fenchone, methylchavicol, limonene, α-pinene, camphene, β-pinene, β-myrcene, α-phellandrene, 3-carene, camphor, and cis-anethole. The major components of essential oil samples are α-pinene, limonene, fenchone, methylchavicol and trans-anethole.

Several studies related to limonene exist. Del-Toro Arreola et al. reported that D-limonene modulates the immune response in BALB/c mice with lymphoma. This study reported that limonene attenuates the gastric carcinogenesis enhanced by sodium chloride via increased apoptosis and decreased ODC activity in gastric cancers.

In our previous research we demonstrated that the volatile oil of fennel extract produced anti-inflammatory activity (0.050 and 0.200 mL/kg doses); additionally, volatile fennel oil showed hypoglycemic activity 4 hours after its application. However, fixed fennel oil did not produce hypoglycemic activity. In order to determine the compound responsible for these activities, we initiated a series of studies. In the present study we aimed to investigate the anti-inflammatory and hypoglycemic activities of limonene, one of the major compounds of volatile fennel oil extract and determined its lethal dose levels.

METHODOLOGY

Animals
Sprague-Dawley rats and Mus musculus Swiss albino mice were maintained in the animal laboratory. The animals were housed in standard cages with food and water ad libitum, at room temperature (22±2 °C) with artificial light from 7.00 a.m. to 7.00 p.m., and provided with pelleted food. The ambient temperature was 22±2 °C, ambient RH was % 55-60 and the rats were housed in groups. The approval of the Animal Ethics Committee was obtained.

Chemicals
(R)-(+)–Limonene was obtained from Aldrich (Steinheim–Germany), Lambda-carrageenan Type IV, indomethacin and alloxan were obtained from Sigma (Steinheim, Germany), etodolac was obtained from FAKO (İstanbul, Turkey) and Glibenclamide was obtained from Nobel, İstanbul, Turkey. Indomethacin and Etdolac were solved with ethyl alcohol.

Acute Toxicity
Swiss albino mice were randomly assigned to nine groups, with six animals in each group. The first group was treated with isotonic saline solution (ISS) (0.9%
NaCl) and employed as a control group. The other eight groups were treated with limonene given intraperitoneally (ip) in increasing dosages of 0.20, 0.32, 0.40, 0.80, 1.60, 3.20, 4.80 and 6.40 mL/kg body weight. The mortality in each cage was assessed 72 h after administration of limonene. The percentage mortalities were converted to probits. Regression lines were fitted by the method of least squares and confidence limits for the LD$_{1}$, LD$_{10}$, LD$_{50}$, LD$_{90}$ and LD$_{99}$ values, and were calculated by the method of Litchfield & Wilcoxon and Kouadio et al. 11-12.

Anti-inflammatory Activity

The method of Winter et. al. with slight modification was employed13. Forty-two rats were divided into seven groups of six animals each. The rats were starved for 12 h and deprived of water only during the experiment. Deprivation of water was to ensure uniform hydration and to minimize variability in oedematous response. Inflammation of the right hind paw was induced by injecting 0.05 mL fresh lambda carrageenan (phlogistic agent) into the subplantar surface. Control Group I was given ISS and Control Group II was given ethyl alcohol. The third group (Reference Group I) received indomethacin (3 mg/kg, ip) and the fourth group (Reference Group II) received etodolac (50 mg/kg, ip) while the remaining three groups received the extract at doses of 0.15 mL/kg, 0.30 mL/kg and 0.60 mL/kg ip$^{14-15}$. The doses utilized in the current study have been chosen according to the LD$_{1}$ value (LD$_{1}$ = 1.01147 mL/kg).

The measurement of foot volume was accomplished by a displacement technique using the plethysmometer (Ugo Basile 7140 plethysmometer, Italy), immediately before and three hours after the injection. The inhibition percentage of the inflammatory reaction was determined for each animal by comparison with controls and calculated by the following formula12:

$I \% = \left[1 - \frac{(dt/dc)}{100}\right]$

where dt is the difference in paw volume in the drug-treated group and dc the difference in paw volume in the control group.

Preparation of Alloxan Diabetic Mice

Mice were starved for 18 h. and diabetes was induced by an ip injection of 150 mg/kg of alloxan monohydrate in ISS. This procedure were repeated three times16. 7 days after the last treatment, mice with blood glucose levels of 200 mL/dL and higher were taken into the study 17.

Hypoglycemic Activity in Diabetic Mice

Animals were randomly divided into three groups of six animals each. Group I
mice received 0.1 mL ISS ip. The animals of Group II were used as a standard, and treated orally with glibenclamide at a dose of 3.0 mg/kg. Group III received ip with 0.15 mL/kg body weight of limonene. Blood glucose levels were determined before treatment, 1, 2, 4 and 24 h after treatment by applying glucose oxidase peroxidase (Abbott, United Kingdom).

Hypoglycemic Activity in Normal (Healthy) Mice

The same protocol described above for normal mice was applied in mice made diabetic by administering 150 mg/kg i.p. of alloxan monohydrate. Also in this case, three groups of six animals each were used.

Statistical Analysis

Results were reported as mean ± standard error of mean (SEM). The total variation was analyzed by performing a one-way analysis of variance (ANOVA). An LSD (least significant difference) test was used for determining significance. Probability levels of less than 0.05 were considered significant. Lethal dose levels were investigated by the probit analysis method. The medium effective dose (ED_{50}) value was calculated by non-linear regression analysis (SigmaPlot 2004 for Windows Version 9.01).

RESULTS AND DISCUSSION

Acute Toxicity

The results of lethal doses are shown in Table 1. The intraperitoneal medium lethal dose (LD_{50}) value for the total number of animals was found to be 2.77796 mL/kg.

Table 1. Lethal doses of limonene.

<table>
<thead>
<tr>
<th>Lethal doses</th>
<th>Dose (mL/kg)</th>
<th>Lower (mL/kg)</th>
<th>Upper (mL/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD_1</td>
<td>1.01147</td>
<td>0.16705</td>
<td>1.67328</td>
</tr>
<tr>
<td>LD_{10}</td>
<td>1.59225</td>
<td>0.49302</td>
<td>2.29631</td>
</tr>
<tr>
<td>LD_{50}</td>
<td>2.77796</td>
<td>1.68481</td>
<td>3.73663</td>
</tr>
<tr>
<td>LD_{90}</td>
<td>4.84663</td>
<td>3.61616</td>
<td>9.68089</td>
</tr>
<tr>
<td>LD_{99}</td>
<td>6.77774</td>
<td>4.74994</td>
<td>20.72301</td>
</tr>
</tbody>
</table>

Anti-inflammatory Activity

Table 2 illustrates the antioedema effect of intraperitoneally administered limonene on carrageenan paw oedema in rats. Limonene showed significant anti-inflammatory effects in all doses studied, peaking at a dose of 0.30 mL/kg (76.29
% inhibition), and with a lesser degree of inhibition at a dose of 0.15 mL/kg (51.729 %) and a dose of 0.60 mL/kg (51.732%).

Table 2. Anti-inflammatory effect of limonene.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose</th>
<th>Paw edema (% mL)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control-I (ISS)</td>
<td>0.1 mL</td>
<td>1.043 ± 0.127</td>
<td>-</td>
</tr>
<tr>
<td>Control-II (ethyl alcohol)</td>
<td>0.1 mL</td>
<td>0.988 ± 0.112</td>
<td>-</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>3 mg/kg</td>
<td>ab 0.024 ± 0.061</td>
<td>87.44</td>
</tr>
<tr>
<td>Etodolac</td>
<td>50 mg/kg</td>
<td>abc 0.559 ± 0.040</td>
<td>43.42</td>
</tr>
<tr>
<td>Limonene</td>
<td>0.15 mL/kg</td>
<td>abc 0.504 ± 0.075</td>
<td>51.72</td>
</tr>
<tr>
<td>Limonene</td>
<td>0.30 mL/kg</td>
<td>abde 0.247 ± 0.074</td>
<td>76.29</td>
</tr>
<tr>
<td>Limonene</td>
<td>0.60 mL/kg</td>
<td>abcf 0.503 ± 0.106</td>
<td>51.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F value</th>
<th>18.196</th>
</tr>
</thead>
<tbody>
<tr>
<td>p value</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Data presented as mean ± standard error of mean (n=6).

Post-hoc LSD test:

a: p<0.05 compared to control-I (ISS) group,
b: p<0.05 compared to control-II (ethyl alcohol) group,
c: p<0.05 compared to indomethacin group,
d: p<0.05 compared to etodolac group,
e: p<0.05 compared to limonene 0.15 mL/kg group,
f: p<0.05 compared to limonene 0.30 mL/kg group.

Compared to the controls, the greatest anti-inflammatory activity was observed in the first reference group receiving indomethacin with a 87.44% regression of inflammation. Etodolac, the second reference agent, showed significant but weaker anti-inflammatory activity with a 43.42% regression of oedema.

Limonene has a significantly lower anti-inflammatory effect compared to indomethacin at 0.15 mL/kg and 0.60 mL/kg doses, and a comparable effect at a 0.30 mL/kg dose. When compared to etodolac, the limonene had a statistically similar effect at 0.15 mL/kg and 0.60 mL/kg, and displayed higher activity at 0.30 mL/kg.

Limonene had significantly lower anti-inflammatory activity at 0.15 mL/kg and 0.60 mL/kg compared to 0.30 mL/kg, whereas the dose of 0.15 mL/kg showed no statistically meaningful difference with a 0.60 mL/kg dose.

The medium effective dose (ED_{50}) value of limonene was found to be 0.142 mL/kg.
Hypoglycemic Activity

The blood glucose levels of the alloxan diabetic mice are given in Table 3 and Figure 1. Table 4 and Figure 2 demonstrate the blood glucose levels of normal mice. Limonene did not have any hypoglycemic effect in alloxane-induced diabetic mice.

Figure 1. Blood glucose levels in glibenclamide, limonene and control groups of mice with alloxane-induced diabetes.

Figure 2. Blood glucose levels in glibenclamide, limonene and control groups of healthy mice.
Table 3. Blood glucose levels in glibenclamide, limonene and control groups of mice with alloxane-induced diabetes.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Fasting blood glucose (mg/dL)</th>
<th>Before treatment</th>
<th>1st hour</th>
<th>2nd hour</th>
<th>4th hour</th>
<th>24th hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (ISS)</td>
<td></td>
<td>337.2±23.4</td>
<td>318.4±25.3</td>
<td>308.0±34.2</td>
<td>225.0±34.4</td>
<td>205.4±19.3</td>
</tr>
<tr>
<td>Glibenclamide</td>
<td></td>
<td>267.3±37.7</td>
<td>197.8±47.3</td>
<td>150.5±39.7</td>
<td>101.8±10.6</td>
<td>90.1±15.4</td>
</tr>
<tr>
<td>Limonene</td>
<td></td>
<td>344.8±36.8</td>
<td>393.8±59.9</td>
<td>251.7±33.3</td>
<td>277.0±40.7</td>
<td>200.0±43.8</td>
</tr>
</tbody>
</table>

F values: 1.509, 4.053, 4.559, 7.901, 4.753

P values: 0.253, 0.039, 0.028, 0.005, 0.027

Data were represented as mean ± standard error of mean.

Post-hoc LSD test:
- a: $p<0.05$ compared to ISS group.
- b: $p<0.05$ compared to glibenclamide group.

Table 4. Blood glucose levels in glibenclamide, limonene and control groups of healthy mice.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Fasting blood glucose (mg/dL)</th>
<th>Before treatment</th>
<th>1st hour</th>
<th>2nd hour</th>
<th>4th hour</th>
<th>24th hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (ISS)</td>
<td></td>
<td>91.50±12.8</td>
<td>72.75±7.2</td>
<td>60.50±4.1</td>
<td>61.25±4.1</td>
<td>54.50±3.0</td>
</tr>
<tr>
<td>Glibenclamide</td>
<td></td>
<td>68.75±01.3</td>
<td>59.25±4.8</td>
<td>59.00±3.6</td>
<td>53.25±2.9</td>
<td>49.75±2.0</td>
</tr>
<tr>
<td>Limonene</td>
<td></td>
<td>94.1±03.8</td>
<td>89.5±5.6</td>
<td>79.8±5.6</td>
<td>69.5±2.4</td>
<td>59.5±2.1</td>
</tr>
</tbody>
</table>

F values: 3.840, 6.709, 5.729, 7.316, 4.257

P values: 0.054, 0.012, 0.020, 0.010, 0.043

Data were represented as mean ± standard error of mean.

Post-hoc LSD test:
- a: $p<0.05$ compared to ISS group.
- b: $p<0.05$ compared to glibenclamide group.

It is observed that limonene group had significant levels of glucose in blood among healthy mice during the 1st, 2nd, 4th and 24th hours compared to glibenclamide group, but the ISS group had significant levels only during the 2nd hour.

In our previous research with volatile fennel oil, we demonstrated fennel's anti-inflammatory and hypoglycemic activities. In this part of the study - one of the studies of a series that we have initiated to determine the compound or compounds responsible - limonene, a major compound of the contents of volatile
fennel oil, anti-inflammatory and hypoglycemic activities have been examined. In addition, LD$_{50}$ levels are also included.

In this work, an LD$_{50}$ dose of limonene, a major component of the essential oil of *Foeniculum vulgare*, was determined to be 2.77796 mL/kg.

The current study clearly demonstrated the anti-inflammatory effect of limonene in vivo, equal to that of etodolac at 0.15 mL/kg and 0.60 mL/kg doses, and to that of indomethacin at a 0.30 mL/kg dose. The anti-inflammatory activity of an LD$_{50}$ level of limonene is determined to be 0.142 mL/kg for rats.

Souza et. al. demonstrated the anti-inflammatory activity of limonene in the mouse model of pleurisy induced by zymosan (500 microg/cavity) and lipopolysaccharide (LPS) (250 ng/cavity), and this study supports our results.\(^\text{59}\)

In this study limonene was also effective in inhibiting the production of nitric oxide as well as a significant inhibition of gamma-interferon and IL-4 production by limonene. Yoon et. al. showed that limonene suppresses the lipopolysaccharide (LPS)-induced production of nitric oxide (NO), prostaglandin E$_2$ (PGE$_2$), and pro-inflammatory cytokines in RAW 264.7 macrophages; detection of D-limonene reduced the expression of TNF-alpha, IL-1β and IL-6 in a dose-dependent manner.\(^\text{20}\) Hirota et. al. showed that limonene may have a potential anti-inflammatory effect useful for the treatment of bronchial asthma by inhibiting cytokines, reactive oxygen species (ROS) production, and inactivating eosinophil migration.\(^\text{21}\) Kummer et. al. showed that limonene isolated from *Citrus latifolia* Tanaka essential oil (CLEO) had potential anti-inflammatory effects, likely by inhibiting proinflammatory mediators present in inflammatory exudate and leukocyte chemotaxis.\(^\text{22}\) In Rehman et. al. D-limonene also effectively decreased the doxorubicin induced overexpression of NF-κB, COX-2, iNOS and nitric oxide.\(^\text{23}\)

Determination of the activity of limonene to prevent the inflammation induced by carrageenan, may result from the aforementioned mechanisms. Further research is needed to reveal the mechanism of the anti-inflammatory activity.

Limonene did not show hypoglycemic activity in diabetic mice. It is found that the limonene group had significant levels of glucose in the blood of healthy mice during the 1st, 2nd, 4th and 24th hours compared to the Glibenclamide group, but the ISS group had significant levels during the 2nd hour only. However, since these values were within normal limits related to the starved blood glucose level, these observed values are considered to have no clinical significance.

CONCLUSION

As a result, we can conclude that limonene can be totally or partially responsible
for the anti-inflammatory activity that volatile fennel oil extract produces, but is not responsible for the hypoglycemic activity. We think that by working on the limonene molecule, we can obtain a new drug that is as potent as indomethacin that has fewer and weaker side effects.

REFERENCES

1. Akgül, A. Species Science & Technology: (1st edn), Publication of Food Technology Association: Ankara-Turkey, 1993; pp 96-98.

