Synthesis and Characterization of Novel 1,3-oxazepin-5(1H)-one Derivatives via Reaction of Imine Compounds with Isobenzofuran-1(3H)-one

Obaid Hasan Abid^{1*}, Hiba Maher Tawfeeg², Rasim Farraj Muslim³

ABSTRACT

The objective of this work is preparation of imine compounds from aromatic aldehyde reaction with aromatic primary amines to interfere with the preparation of disubstituted-oxazepine derivatives from the reaction of prepared imine compounds with isobenzofuran-1(3H)-one compound. Experimental part included synthesis of imine compounds (S₁-S₂) and synthesis of disubstituted-oxazepine derivatives (S₆-S₁₀). A number of new disubstituted-oxazepine derivatives were synthesized by acid-catalyzed cycloaddition- reaction of imine compounds with isobenzofuran-1(3H)-one in anhydrous THF under dry and reflux conditions with high yields. Imine compounds were synthesized by thermal condensation reaction of aromatic aldehydes, with aromatic primary amines. The products were identified by their melting point, FT-IR and 1H-NMR spectra. The formation of stable 7th – membered 1,3- oxazepine ring has been achieved by (5+2) cycloaddition reaction of isobenzofuran-1(3H)-one compound and imine group. The results of FT-IR and 1H-NMR showed that the target molecules were clearly formed due to the least obstructive effect in all preparation processes.

Keywords: Imine compound; isobenzofuran-1(3H)-one; disubstituted-oxazepine derivatives.

INTRODUCTION

Imine compounds

Imine compounds are class of compounds containing the imine group (-HC=N), usually prepared by the condensation of amino group in primary amines with an active carbonyl group of aldehydes and ketones, they are versatile precursors in the synthesis of industrial compounds via ring closure, and they exhibit a wide

¹Department of Scientific Affairs and Graduate Studies, University of Fallujah, Anbar, Iraq

²Department of Chemistry, College of Education for Pure Sciences, University of Anbar, Al-Anbar, Iraq

³Department of Ecology, College of Applied Sciences-Heet, University of Anbar, Al-Anbar, Iraq

^{*}Corresponding author: Obaid Hasan Abid, e-mail address: ra80sim@yahoo.com (Received 06 August 2017, accepted 20 September 2017)

range of biological activities and pharmacological applications.¹⁻³ The reaction of 4-fluorobenzaldehyde with 1-benzylpiperidin-4-amine presence of per chloric acid efficiently gave the imine product (Scheme 1).4

Scheme 1. The effect of catalyst on imine compound formation

As well as the reaction of nicotinohydrazide with 2-chloro quinoline-3-carbaldehyde produce the imine compound in good yield (Scheme 2).5

Scheme 2. Uses of lemon juice to prepare imine compound

Oxazepine Derivatives

Oxazepines are class of heterocyclic compounds of seven- membered ring with two hetero- atoms (O and N), oxygen atom is located at position (1) and nitrogen atom in the (-2, -3 or-4) positions as shown in scheme 3.6

$$\begin{array}{c} \text{Cl} \\ \text{3} \\ \text{2N} \\ \text{0} \\ \text{7} \\ \text{6} \\ \text{1}, \text{2-oxazepine} \end{array} \begin{array}{c} \text{SO} \\ \text{1} \\ \text{3} \\ \text{5} \\ \text{4} \\ \text{1}, \text{3-Benzoxazepine} \end{array} \begin{array}{c} \text{8} \\ \text{9} \\ \text{1} \\ \text{1}, \text{3} \\ \text{1}, \text{3-Benzoxazepine} \end{array} \begin{array}{c} \text{1} \\ \text{1} \\ \text{3-Benzoxazepine} \\ \text{1}, \text{3-benzoxazepine} \end{array}$$

Scheme 3. Structures of oxazepines

Oxazepines have been synthesized mainly by dipolar cycloaddition reaction of imine compounds with five atoms cyclic anhydride, such as phthalic, succinic, maleic pyromellitic and others.7-14

For example, the reaction of phthalic anhydride with N-(4-(dimethylamino) benzylidene) thiophen-2-amine in dry benzene gave an 1,3-oxazepine derivaties (Scheme 4).15

$$\begin{array}{c} H_3C\\ H_3C\\ \\ N\text{-}(4\text{-}(\text{dimethylamino})\text{benzy}\\ \text{lidene})\text{thiophen-2-amine} \end{array} \begin{array}{c} Dry \text{ benzene}\\ Refl. 4\text{-}5 \text{ hr.} \\ \\ Phthalic\\ anhydride\\ \end{array} \begin{array}{c} H_3C\\ \\ H_3C\\ \\$$

Scheme 4. Synthesized of oxazepine-1,5-dione derivatives

In scheme 5, the product of the reaction between pyromellitic anhydride and derivative of (E)-5-(((5-(p-to 1yl)-1,3,4-thiadiazol-2-yl)imino)methyl)furan-2(5H)-one compound.13

Scheme 5. Pyromellitic anhydride in bis([1,3]oxazepine)-1,5,7,11-tetraone synthesis

METHODOLOGY

Melting points were recorded on Electrothermal Melting Point Apparatus (uncorrected). FT-IR spectra were recorded at room temperature from (4000-400) cm⁻¹ on Infrared Spectrophotometer Model Tensor 27 Bruker Co., Germany, and the ¹H-NMR spectra was recorded on Bruker Ac-300MHz spectrometer.

Synthesis of imine compounds (S₁-S₂)

Imine compounds were synthesized according to literature procedure. 9,16,17 An equimolar mixtures (0.02mol) of aldehydes and aromatic amines and trace of glacial acetic acid as catalyst in absolute ethanol (25ml) was placed in a (100ml) round-bottom flask equipped with condenser and stirring bar. The mixture was allowed to react at reflux temperature for 4hr, then to cool down to room temperature, whereby a crystalline solid separated out. The solid product was filtered off and recrystallized form ethanol. The structural formuli, nomenclature, melting points, colors, and percentage yields for the synthesized Imine compounds are given in Table 1.

Table 1. Structural formuli, nomenclature, melting points, colors, and % yields of imines compound (S_1-S_5) .

Comp. Code	Structural formuli	Nomenclature	Yield %	m.p. °C	Color
S ₁	$\begin{array}{c c} O_2N & & & \\ & NO_2 & & \\ & N & C & \\ & H & \end{array}$	(E)-1-(4- chlorobenzylidene)- 2-(2,4-dinitrophenyl) hydrazine	82%	236-238	Orange
S_2	$\begin{array}{c c} O_2N & & & Br \\ \hline NO_2 & & & \\ N & & C \\ H & & H \end{array}$	(E)-1-(4- bromobenzylidene)- 2-(2,4-dinitrophenyl) hydrazine	84%	232-234	Orange
S₃	O_2N NO_2	(E)-4-((2-(2,4- dinitrophenyl) hydrazono)methyl) phenol	80%	240-242	Bright dark red
S ₄	ON CH ₃ OH	(E)-4-(4- hydroxybenzylidene amino)-1,5-dimethyl- 2-phenyl-1H-pyrazol- 3(2H)-one	83%	218-220	Bright pale yellow
S ₅	$\bigcap_{H_3C} \bigcap_{CH_3} \bigcap_{Cl} \bigcap_{$	4-(5-chloro-2- hydroxybenzylid eneamino)-1,5-dimethyl- 2-phe nyl -1H-pyrazol- 3(2H)-one	89%	138-140	Bright pale yellow

Synthesis of disubstituted-oxazepine derivatives (S₆-S₁₀)^{11, 14}

In well dried 100-ml round-bottom flask equipped with condenser a mixture of Imine compound (0.01mol) and isobenzofuran-1(3H)-one (0.01mol) dissolved in (20ml) of tetrahydrofuran (THF) with trace of glacial acetic acid as catalyst was refluxed for 3hr and left to stand for 24hr at room temperature then solid product separated out. The solid product was filtered off and recrystallized form ethanol. The structural formuli, nomenclature, melting points, colors, and percentage yields for the synthesized disubstituted-1,3-oxazepine derivatives are given in Table 2.

Table 2. Structural formuli, nomenclature, melting points, colors, and % yields of disubstituted-oxazepine derivatives (S_6-S_{10}) .

Comp.	Structural formuli	Nomenclature	Yield %	m.p. °C	Color
S ₆	O ₂ N-NO ₂ HN-N O CI	3-(4-chlorophenyl)-4- (2,4-dinit rophenylamino)- 3,4-dihydrobe nzo[e][1,3] oxazepin-5(1H)-one	95%	194-196	Orange
S ₇	O ₂ N	3-(4-bromophenyl)-4- (2,4-di nitrophenylamino)- 3,4-dihydro benzo[e][1,3] oxazepin-5(1H)-one	96%	198-200	Orange
S ₈	O ₂ N	4-(2,4-dinitrophenylamino)- 3-(4-hydroxyphenyl)- 3,4dihydro benzo [e][1,3] oxazepin-5(1H)-one	93%	184-186	Bright dark red
S ₉	H ₃ C N CH ₃	4-(1,5-dimethyl-3-oxo- 2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)-3-(4- hydroxyphenyl)-3,4-dihydro benzo [e][1,3]oxazepin- 5(1H)-one	83%	239-240	Yellow
S ₁₀	H ₃ C N HO N O CI	3-(5-chloro-2- hydroxyphenyl)-4-(1,5- dimethyl-3-oxo-2-phenyl- 2,3-dihydro-1H-pyrazol-4- yl)-3,4-di hydrobenzo[e] [1,3] oxazepin-5(1H)-one	96%	138-140	Pale yellow

RESULTS AND DISCUSSION

Imine compounds were synthesized from commercially available aldehydes with primary amines and identified by their melting points, FT-IR, the FT-IR spectra, example figures 1 and 2, showed the appearance of the stretching absorption bands of the characteristic groups of the resulting imine (C=N) at (1573-1611) cm⁻¹ beside the characteristic bands of the residual groups in the structure, Table 3, indicative of formation of the products.¹⁸ The mechanism of imine compounds formation, Scheme 6, was thoroughly studied and established by many authorized literatures.19

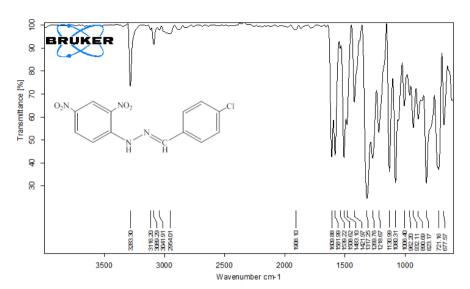
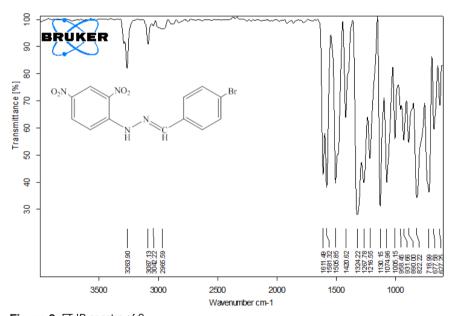



Figure 1. FT-IR spectra of S₁

Figure 2. FT-IR spectra of S_2

Table 3. FTIR of imine compounds (S_1-S_5) .

FT-IR, ∨(cm ⁻¹)							
Comp.	C N	C=C	С-Н	C-H Alkene	C-H Ali.		Others
Code	C=N	Aromatic	Aromatic		Asymmetric	Symmetric	Others
S ₁	1609	1581	3041	3089			NO ₂ 1508, 1317 N-H 3283 C-Cl 823
S ₂	1611	1581	3042	3087			NO ₂ 1505, 1324 N-H 3263
S ₃	1600	1584	3042	3112			NO ₂ 1508, 1305 O-H 3422 N-H 3257
S ₄	1573	1507	3044	3114	3980	2892	C=0 1601 O-H 3582
S ₅	1594	1559	3044	3075	2983	2874	C=0 1634 C-CI 815 O-H 3450

The reaction of the aldehydes compounds and amine compounds to prepare imine compounds is given in the following equation (See scheme 6).

1-
$$R$$
 C R' $+$ H^+ R'' R'

Scheme 6. Mechanism for the formation of imine compounds

In this work, the synthesis of new disubstituted-oxazepine derivatives by direct reaction of several imine compounds with Isobenzofuran-1(3H)-one in dry THF is reported. The synthesis of these compounds was achieved by the reaction of imine compounds and isobenzofuran-1(3H)-one in anhydrous THF at dry and

reflux conditions. The resulting products were identified by their melting points, FT-IR and ¹H-NMR spectra. The FT-IR spectra, figures (3) and (4), table (4) showed characteristic stretching absorption bands at (1613-1654) cm⁻¹ indicative of C=O (lactam) bond formation beside the characteristic stretching absorption bands of the residual groups in the structure.18

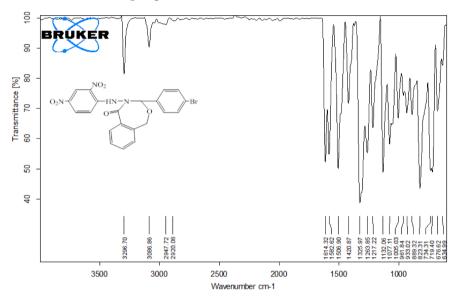


Figure 3. FT-IR spectra of S,

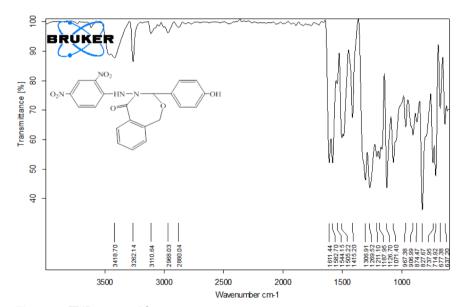


Figure 4. FT-IR spectra of S_a

Table 4. FT-IR of disubstituted-oxazepine derivatives ($S_6 - S_{10}$).

	FT-IR, v(cm ⁻¹)							
Comp.	C=0	C-0	C-N	C=C	С-Н	C-H Aliphatic		Othors
Code	Lactam	Lactam	Lactam	Aromatic	Aromatic	Asymmetric	Symmetric	Others
S ₆	1613	1137	1223	1585	3091	2995	2890	NO ₂ 1515, 1327 N-H 3286 C-Cl 825
S ₇	1614	1132	1263	1582	3086	2947	2920	NO ₂ 1513, 1330 N-H 3299
S ₈	1611	1126	1269	1582	3110	2968	2880	NO ₂ 1505, 1306 O-H b3412 N-H 3262
S ₉	1654	1158	1257	1582	3015	2988	2825	O-H 3450
S ₁₀	1647	1134	1290	1580	3064	2962	2915	O-H b3462 C-Cl 819

The ¹H-NMR spectrum of compound S_o in solvent DMSO, Figure (5) showed chemical shifts, δ (ppm), single in 1.23 (3H, N-CH $_3$), single in 2.44 (3H, =C-CH $_3$), single in 3.13 (2H, O-CH₂), single in 9.46 (1H, N-CH), single in 9.93 (1H, OH), multiplet 7.67-6.82 (13H, aromatic proton) and spectrum of compound S_{10} , Figure 6 showed chemical shifts, $\delta(ppm)$, singlet in 1.23 (3H, N-CH $_{_3}$), singlet in 2.42 (3H, , =C-CH₂), singlet in 3.43 (2H, O-CH₂), singlet in 9.67 (1H, N-CH), singlet in 12.77 (1H, OH), multiplet 7.63-6.90 (13H, aromatic proton), (20) other chemical shifts, $\delta(ppm)$ of compounds (S_6 - S_8), are given in Table 5.

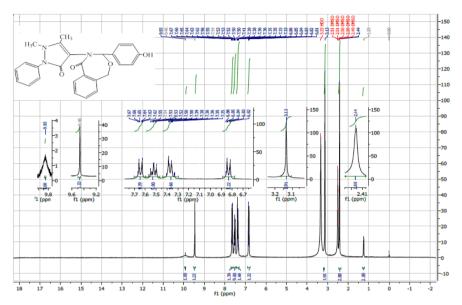


Figure 5. ¹H-NMR spectra of S_q

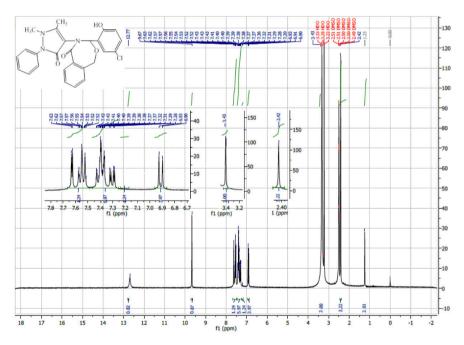


Figure 6. ¹H-NMR spectra of S₁₀

Table 5. The $^1\text{H-NMR}$ spectra of disubstituted-oxazepine derivatives (S $_6$ -S $_{10}$) in DMSO.

Comp. Code	Chemical Shift δ ppm
S ₆	Singlet in 2.26 (2H, $O-C\underline{H}_2$), singlet in 4.71 (1H, $-N\underline{H}$) singlet in 11.71 (1H, $N-C\underline{H}$), multiplet in 7.56-8.88 (11H, aromatic proton).
S ₇	Singlet in 3.26 (2H, $O-C\underline{H}_2$), singlet in 4.70 (1H, $-N\underline{H}$), singlet in 11.71 (1H, $N-C\underline{H}$), multiplet in 7.69-8.89 (11H, aromatic proton).
S ₈	Singlet in 3.35 (2H, $O-C\underline{H}_2$), singlet in 4.37 (1H, $-N\underline{H}$), singlet in 10.07 (1H, $N-C\underline{H}$), singlet in 11.57 (1H, $O\underline{H}$), multiplet 6.86-8.87 (11H, aromatic proton).
S ₉	Singlet in 1.23 (3H, N-C \underline{H}_3), singlet in 2.44 (3H, =C-C \underline{H}_3), singlet in 3.13 (2H, O-C \underline{H}_2), singlet in 9.46 (1H, N-C \underline{H}), singlet in 9.93 (1H, O \underline{H}), multiplet 7.67-6.82 (13H, aromatic proton).
S ₁₀	Singlet in 1.23 (3H, N-C \underline{H}_3), singlet in 2.42 (3H, , =C-C \underline{H}_3), singlet in 3.43 (2H, O-C \underline{H}_2), singlet in 9.67 (1H, N- \underline{CH}), singlet in 12.77 (1H, OH), multiplet 7.63-6.90 (13H, aromatic Proton).

It may be concluded that the reaction takes place via concerted (5+2) dipolar cycloaddition mechanism in which the mild nucleophile (imine) attacked the electrophilic carbon atom of the carbonyl group to give a dipolar intermediate, which collapses to give the target molecule, the roll of the acid-catalyst is to enhance the electro positivity of the carbon nucleus.

The reaction of the prepared imine compounds with Isobenzofuran-1(3H)-one is given in the following equation (See scheme 7).

$$R'=H$$

$$R'=H$$

$$R'=H$$

$$R'=H$$

$$R'=H$$

$$R'=H$$

$$R'=H$$

$$R'=H$$

$$R'=H$$

$$R''=H$$

Scheme 7. Synthesized of disubstituted oxazepine derivatives

The reaction course and the suggested mechanism is given by Scheme 8.

$$\begin{array}{c}
CH_3COOH \\
O \\
R
\end{array}$$

$$\begin{array}{c}
R \\
CH_3COO^{-}
\end{array}$$

$$\begin{array}{c}
R \\
O \\
R''
\end{array}$$

$$\begin{array}{c}
R \\
O \\
R''
\end{array}$$

$$\begin{array}{c}
R \\
O \\
R''
\end{array}$$

Scheme 8. Mechanism for the formation of disubstituted oxazepine derivatives

REFERENCES

- 1. K. Brodowska and E. Chruścińska, Schiff bases interesting range of applications in various fields of science, CHEMIK, 2014, 68, pp. 129-134.
- 2. W. Qin, S. Long, M. Panunzio and S. Biondi, Schiff Bases: A Short Survey on an Evergreen Chemistry Tool, Molecules, 2013, 18, pp. 12264-12289.
- 3. Adabiardakani. M. Hakimi and H. Kargar, Cinnamaldehyde Schiff Base Derivatives: A Short Review, WA P journal, 2012, 2, pp. 472-476.
- 4. P. Mayavel, K. Thirumurthy, S. Dineshkumar and G. Thirunarayanan, Perchloric acid catalyzed condensation of amine and aldehydes: Synthesis and antibacterial activities of some aryl (E)-imines, umcschem, 2014, lxix, pp. 159-179.
- 5. V. Desai and R. Shinde, Green synthesis of nicotinic acid hydrazide schiff bases and its biological evaluation, Int J Pharm, 2015, 5, pp. 930-935.
- 6. A. Yasir and H. Mohammed, Synthesis of new Heterocyclic Derivative [4-(2-Phenyl-2,3dihydrobenzo-1,3-oxazepine-4,7-dione)benzaldehyde], Int. J. Adv. Res, 2016, 5, pp. 170-175.
- 7. J. Bucher, J. Haseman, R. Herbert, M. Hejtmancik, and M. Ryan, Toxicity and carcinogenicity studies of oxazepam in the Fischer 344 rat, Toxycological, 1998, 42, PP.1-12.
- 8. G. Yeap, T. Mohammad and H. Osman, 1,3-Oxazepane-4,7-Diones Compounds: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D), J. of Molecular structure, 2011, 982, pp. 33-44.
- 9. P. Verma, S. Gupta and V. Yadav, Catalyst-free and facile green synthesis of some novel oxazepine derivatives, Der Chemica-Sinica, 2015, 6, pp. 86-89.
- 10. N. Al-Jamali, M. Jameel, A. Al-Haidari, Preparation and invitigation of diazipene, oxazipen compounds through condensation reaction, Innovare Journal of Science, 2013, 1, pp. 13-15.
- 11. Younus and N. Jaber, Synthesis and Characterization a New 1,3-Oxazepine Compounds from New Bis-4-Amino-3-mercapto-1,2,4-triazole Derivatives, Organic Chemistry: An Indian Journal, 2016, 12, pp. 1-12.
- 12. T. Helal, G. Abbas and F. Mohammed, Synthesis and Identification of new 4-Amino phenazone derivatives containing azo group, IJMRD, 2014, 1, pp.41-45.
- 13. A. Kareem and H. Ghanim, Synthesis and identification some of 1,3-oxazepine derivatives containing azo group, Journal of Applied, Physical and Biochemistry Research, 2015, 5, pp. 45-56.
- 14. R. Haiwal, Synthesis of Novel 1,3-Oxazepine Compounds from New AzoSchiff bases Containing Thiadiazole Moiety, Scientific Journal of Kerbala University, 2011, 9, pp. 96-111.

- 15. Mukhlus, M. Al-Rawi, J. Tomma and A. Al-Dujaili, Synthesis and Characterization of New Oxazepines Derived From D-Erythroascorbic Acid, Ibn Al-Haitham Journal for Pure and Applied Science, 2012, 25, pp.1-14.
- 16. Khan, I. Raoof and H. Essa, Synthesis, Characterization of Some New Azo Compounds Containing 1,3-Oxazepine, Anthraquinone Moieties and Studying Their Activity against Pathogenic Bacteria, Journal of Natural Sciences Research, 2015, 5, pp. 69-80.
- 17. N. Aljamali, Comparison and Bio-Chemical Study of (Imine, Oxazepam, Diazepam, Sul de) -Derivatives on Microbial, International Journal of Current Research in Science and Technology, 2015, 1, pp. 9-15.
- 18. H. Sabah, Synthesis, spectroscopic characterization of schiff bases derived from 4,4'-methylenedianiline, Der Pharma Chemica, 2014, 6, pp. 38-41.
- 19. R. Al-Juburi, Synthesis and Characterization of Some Heterocyclic Compounds (Oxazepine, Tetrazole) Derived from Schiff Bases, Journal of Al-Nahrain University, 2012, 15, pp. 60-67.
- 20. J. Simek, "Organic chemistry", 8th edition, Pearson education, Inc., 2013, pp. 412-414.
- 21. K. Al-Sultani, Synthesis, Identification and Evaluation the Biological Activity for Some New Heterocyclic Compounds Derived from Schiff Bases, IOSR Journal of Applied Chemistry, **2016**, *9*, pp. 01-11.
- 22. O. Abid and A. Ahmed, Synthesis and Characterization of Novel Quinazoline Derivatives Via Reaction of Isatoic Anhydride with Schiff's Base, IJANS, 2013, 2, pp. 11-20.
- 23. R. Silverstein, F. Webster and D. Kiemle, "Spectrometric identification of organic compounds", 7th edition, John Wiley and sons, Inc., 2005, pp. 127-202.