Beneficial Effects of Commonly Used Phytochemicals in Diabetes Mellitus

Merve Bacanlı1*, Hatice Gül Göktaş1,2, Nurşen Başaran3, Nuray Arı3, A. Ahmet Başaran4

1 Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06100, Ankara, Turkey
2 Çukurova University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 01330, Adana, Turkey
3 Ankara University, Faculty of Pharmacy, Department of Pharmacology, 06100, Ankara, Turkey
4 Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Ankara, Turkey

ABSTRACT

Diabetes mellitus, a metabolic disorder, is characterized by absolute or relative deficiencies in insulin secretion and/or insulin action associated with chronic hyperglycemia. The prevalence of diabetes is increasing worldwide, especially in developing countries. The diabetes treatment has higher costs, limited efficacy and side effects. As a result of these factors, patients often have used alternative forms of therapy such as herbal medicines. Plants often contain various amounts of phenolics, flavonoids and tannins and most of the studies are focused on the antidiabetic effects of these phytochemicals due to their antioxidant properties. In this review, the role of oxidative stress on diabetes and the effects of different phytochemicals (limonene, sinnamic acid and ursolic acid) to diabetes mellitus therapy will be discussed.

Keywords: limonene, cinnamic acid, ursolic acid, diabetes

INTRODUCTION

Diabetes mellitus, a metabolic disorder, is characterized by absolute or relative deficiencies in insulin secretion and/or insulin action associated with chronic hyperglycemia and disturbances of carbohydrate, lipid and protein metabolism. Due to a higher incidence of the risk factors, the prevalence of diabetes is increasing worldwide, especially in developing countries. 2.8% of world population suffer from diabetes and it is concluded that it may cross 5.4% by the year of 2025. In Turkey, 7.4% of population suffer from diabetes and also it is estimated
that the number of patients will be increased to 9.6% of population by the year of 2030².

The studies on diabetes therapy have gained interest due to its unwanted effects on human life e.g. changing lifestyles lead to reduced physical activity, and increased obesity². In diabetes treatment, the current drugs can be divided into three groups: (i) Sulphonylureas such as glibenclamide, the glinides, insulin analogs, glucagon-like peptide 1 (GLP-1) agonists and dipeptidyl peptidase-IV (DPP-IV) inhibitors can increase endogenous insulin availability, (ii) Thiazolidinediones, agonists of the peroxisome proliferatoractivated receptor gamma (PPARγ) and the biguanide metformin can enhance the sensitivity of insulin, (iii) α-glucosidase inhibitors such as acarbose can reduce the digestion of polysaccharides and their bioavailability⁴,⁵. All of these drugs have higher costs, limited efficacy and tolerability and/or significant side effects⁶,⁷.

As a result of these factors, patients have often used alternative forms of therapy such as herbal medicines⁸. Especially, the herbal medicine usage for diabetes treatment is common in West Africa, Central America and Asia⁹,¹⁰,¹¹. According to an estimation published by the World Health Organization (WHO), approximately 80% of diabetic patients presently rely on herbal medicine for their successive treatments¹². Traditional medicine is an accessible, affordable and culturally acceptable form of healthcare trusted by large numbers of people, which stands out as a way of coping with the relentless rise of chronic non-communicable diseases in the midst of soaring health-care costs and nearly universal austerity¹³. Unfortunately, pharmacological and toxicological evidences validating the safety and efficacy of these medicinal plants are not readily available¹⁴.

Plants often contain various amounts of phenolics, flavonoids and tannins. Most of the studies are focus on the antidiabetic effects of these phytochemicals due to their antioxidant properties¹⁵. For example, epidemiological studies have associated a diet rich in isoflavones with a lower risk of diabetes and diabetes related complications¹⁶,¹⁷.

In this review, the role of oxidative stress on diabetes and diabetes mellitus therapy with different phytochemicals (limonene, cinnamic acid and ursolic acid) will be discussed.

DIABETES, OXIDATIVE STRESS and ANTIOXIDANTS

There are different types of diabetes. (i) Type 1 diabetes: This form of diabetes is also called insulin dependent diabetes mellitus (IDDM). When the pancreas produces insufficient amounts of insulin to meet the body’s needs, this type of diabetes will occur. A trigger—either an illness or stress—causes the immune system
to attack and destroy the beta cells of the pancreas. As a result, pancreas stops producing insulin. Type 1 develops suddenly in childhood or in adolescence. (ii) Type 2 diabetes: This form of diabetes is also called Non-Insulin Dependent Diabetes Mellitus (NIDDM). When the pancreas produces insulin, but the cells are unable to use it efficiently; this effect is called “insulin resistance”. Type 2 diabetes is far more common than Type 1 and approximately 90% of all diabetes cases are Type 2. There is a strong genetic predisposition. Age, obesity and sedentary lifestyle are also risk factors. (iii) Gestational diabetes mellitus: Glucose intolerance being recognized during pregnancy. It can complicate pregnancy leading to prenatal morbidity and mortality³.

It is known that oxidative stress results from an imbalance between the generation of oxygen derived radicals and antioxidant system¹⁸. Numerous studies have shown that diabetes mellitus is associated with increased formation of free radicals and decrease in antioxidant potential. In both types of diabetes, oxidative stress is increased⁹.

Multiple factors can cause oxidative stress in diabetes. The most important factor is glucose autoxidation leading to the production of free radicals. Other factors include cellular oxidation/reduction imbalances and reduction in antioxidant defenses (including decreased cellular antioxidant levels and a reduction in the activity of enzymes that dispose of free radicals). Levels of some prooxidants such as ferritin and homocysteine are elevated in diabetes. Another important factor is the interaction of advanced glycation end products (AGEs) with specific cellular receptors called AGE receptors (RAGE). Elevated levels of AGE are formed under hyperglycemic conditions. Their formation is initiated when glucose interacts with specific aminoacids on proteins forming a compound that then undergoes further chemical reactions. Glycation of protein alters protein and cellular function, and binding of AGEs to their receptors can lead to modification in cell signaling and further production of free radicals²⁰. The other nonenzymatic factors are activation of NAD(P)H oxidases, nitric oxide synthase, and a specific enzyme activity, xanthine oxidase, which produces oxidant species and subsequent oxidative stress²¹, ²², ²³, ²⁴.

Numerous reports have documented elevations in peroxide levels in plasma, red blood cells and tissues of animals with chemically-induced diabetes²⁵, ²⁶. Increases in blood peroxides or other indices of oxidative stress have also been reported in diabetic patients²⁷. Both increases and decreases in the activities of key antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) have been reported²⁸. In a pediatric study, antioxidant activity was found to be decreased in
relation to poor glycemic control. It is also shown that oxidative stress exists in diabetic patients as evidenced by increased total antioxidant capacity in saliva and blood of patients.

The primary defense against oxidative stress in the cell, rests with antioxidants like vitamin E, glutathione and peroxidases. Antioxidants show their effects with different mechanisms. These mechanisms are: enzymes that degrade free radicals, proteins (e.g. transferrin) bind metals which stimulate the production of free radicals and antioxidants like vitamin E and C scavenge free radicals.

Recently, there has been a growing interest in replacing synthetic diabetic drugs with natural antioxidants from plant materials. Studies have shown that plants contain a large variety of substances that possess antioxidant activity. They can prevent the formation of advanced glycated end products (AGEs) and other diabetic complications associated with oxidative stress. Phytochemicals with antioxidant effects include; cinnamic acids, coumarins, diterpenes, flavonoids, lignans, monoterpenes, phenylpropanoids, tannins and triterpenes.

There are too many studies about the beneficial effects of phytochemicals on diabetes therapy. Arya et al. (2014) demonstrated that low dose quercetin and quinic acid showed protective effect on the degeneration in the liver, kidney and pancreas tissues of streptozotocin (STZ) induced diabetic rats. In an other study, glucose tolerance significantly improved by two flavonoids, rutin and genistein, in STZ induced diabetic rats. It is concluded that dietary soy isoflavones increased insulin secretion and prevented the diabetic cataracts in diabetic rats. Similarly, Lee (2006) showed that soy protein and genistein were seemed to be beneficial for correcting hyperglycemia and preventing diabetic complications in diabetes induced rats. Şakul et al. (2013) demonstrated that antioxidant pyridoindole reversed the effects of diabetes in rat brain and peripheral tissues. The aqueous extract of Anchusa strigosa flowers (250 mg/kg and 500 mg/kg) caused a dose-dependent fall in blood glucose, cholesterol and triglyceride levels in STZ induced diabetic rats. In a study with STZ induced diabetes rats, it is concluded that the extract of Beta vulgaris L. var cicla when administered by gavage may reduce glucose levels.

ANTIOXIDANT PHYTOCHEMICALS in DIABETES

Limononene

Limonene (p-Mentha-1,8-diene) is a major component of oils obtained from Citrus plants, orange, lemon and grape fruit. Limonene is listed in the Code of Federal Regulation as generally recognized as safe (GRAS) for a flavoring agent. It is commonly used as an additive in foods, soaps and perfumes. Die-
tary intake of limonene varies depending on the intake of foods. It is also shown that it has exerted antiproliferative effects in various cancer cell types. It has been clinically used to dissolve gallstones and also to prevent gastric diseases.

Glycation inhibitors possessing amino groups could compete to bind to glucose, scavenge dicarbonyls, and chelate metal ions and the structure of limonene precludes such an action. Joglekar et al. (2013) studied the antiglycative properties of limonene and also the interaction of limonene with bovine serum albumin (BSA) and the possible mechanism of inhibition of protein glycation. They found that limonene functioned as a protein glycation inhibitor through a novel mechanism of stabilization of the native protein structure.

In a study with STZ induced diabetic rats, 50, 100 and 200 mg/kg doses of limonene and 600 µg/kg glibenclamide were administrated for 45 days. It was found that the antidiabetic effect of d-limonene was comparable with glibenclamide and the effect of d-limonene was more pronounced in the doses of 100 mg/kg body weight than the other two doses. More et al. (2014) have demonstrated that 100 µM concentration of limonene demonstrated 85.61% inhibition of protein glycation while the positive control aminoguanidine demonstrated 88.02% inhibition at 1 mM concentration in STZ induced diabetic rats. Administration of D-limonene to diabetic rats for 45 days also caused a significant reduction in the levels of lipid peroxidation by-products and an increase in the activities of antioxidant enzymes including SOD, CAT, GSH and glutathione S transferase, when compared with the untreated diabetic group.

Cinnamic Acid

Cinnamic acid and its derivatives possess a variety of pharmacologic properties such as antioxidant, hepatoprotective, antimalarial and antityrosinase activities. It is a phenolic acid that exist in many fruits, vegetables, and beverages including blueberry, kiwi, cherry, plum, apple, pear, chicory, artichoke, potato, cider and coffee. Most of the studies have focused on the antidiabetic activities of cinnamic acid and its derivates.

Inhibition of α-glucosidase may be effective in diabetes therapy. Due to this effect, mammalian α-glucosidase inhibitors from natural sources can be beneficial in the prevention and treatment of diabetes mellitus. Adisakwattana et al. (2009) have demonstrated the α-glucosidase inhibitory activity of cinnamic acid derivates against intestinal sucrase inhibitors. It is showed that Cinnamon extracts (50, 100, 150 and 200 mg/kg) which include cinnamic acid significantly, decreased the blood glucose and lipid levels in mice. Ping et al. (2010) have studied the hypoglycemic effect of cinnamon oil which contains water soluble polyphenol type A polymer, cinnamaldehyde and cinnamic acid as active com-
pounds, in type 2 diabetic animal model. They found that fasting blood glucose concentration was significantly decreased with the 100 mg/kg group compared to other groups. In addition, they found significant decreases in plasma C-peptide, serum triglyceride, total cholesterol and blood urea nitrogen levels while serum high density lipoprotein (HDL)-cholesterol levels were significantly increased after 35 days. Huang et al. (2009) have reported that caffeic and cinnamic acids improve glucose uptake in TNF-α-treated insulin-resistant FL83B. Same group have treated the mouse FL83B cells with TNF-α to induce insulin resistance to evaluate the effect of caffeic and cinnamic acids on glucose metabolism. They found that caffeic and cinnamic acids increased expression of glycogen synthase, whereas the expression of glycogen synthase kinase and phosphorylation of glycogen synthase at Ser641 in insulin-resistant mouse hepatocytes was decreased. The compounds suppressed the expression of hepatic nuclear factor-4 in TNF-α-treated mouse FL83B hepatocytes. They concluded that caffeic and cinnamic acids ameliorated glucose metabolism by promoting glycogenesis and inhibiting gluconeogenesis in TNF-α-treated insulin-resistant mouse hepatocytes. Rao and Rao (2001) have reported the antihyperglycemic effect of Syzygium alternifolium seeds which contain cinnamic acid. The treatment with 50 mg of the fraction C (which includes cinnamic acid) kg b.w/day for 30 days resulted in a significant decrease in the fasting blood glucose levels of diabetic rats. The altered enzyme activities of carbohydrate metabolism in liver and kidney of diabetic rats were significantly reverted to near normal levels by the administration of fraction C.

Ursolic Acid

Ursolic acid (3β-hydroxy-12-urs-12-en-28-oic acid) is a well-known pentacyclic triterpene which is commonly used in traditional Chinese medicine. Malus pumila, Ocimum basilicum, Vaccinium spp., Vaccinium macrocarpon, Olea europaea, Origanum vulgare, Rosmarinus officinalis, Salvia and Thymus plants are the main sources of ursolic acid. In recent years, interest in ursolic acid has increased due to its many beneficial effects and low toxicity. Ursolic acid has been used against different diseases including osteoarthritis, rheumatoid arthritis, ulcer, cancer and diabetes. Ursolic acid has been suggested to increase insulin level with the preservation of pancreatic β-cells and modulate blood glucose level in diabetic mice.

Yin and Chan (2007) have found that oleanolic acid and ursolic acid could inhibit in vitro formation of pentosidine and Ne-(carboxymethyl)lysine (CML) which have been implicated in the pathogenesis of diabetic nephropathy and other diabetic complications. Wang et al. (2010) have demonstrated that ole-
anolic acid (0.1 and 0.2%) and ursolic acid (0.1 and 0.2%) markedly suppressed renal aldose reductase activity and enhanced glyoxalase I activity, which contributed to decrease renal AGEs formation and improve renal functions. The impact of these two triterpenes on mRNA expression of renal aldose reductase and glyoxalase I revealed that the effects of these agents occurred at transcription level. Low-dose ursolic acid (0.01% in food) administration in STZ induced diabetic mice with for three months, glomerular hypertrophy and type IV collagen accumulation in the kidneys were found to be markedly ameliorated. It is concluded that, ursolic acid significantly inhibited sorbitol dehydrogenase activity as well as aldose reductase activity, and increased glucokinase activity. While decreasing glucose-6-phosphatase activity, it elevated the hepatic glycogen content and lowered the plasma total cholesterol, free fatty acid, and triglyceride concentrations compared with the diabetic control group. It also normalized hepatic triglyceride concentration in the livers of STZ induced diabetic mice. In a study with STZ induced diabetic rats for 16 weeks, ursolic acid treatment prevented biochemical and histopathologic changes in the kidneys associated with diabetes such as alteration in renal function and increased oxidative stress, NF-κB activity, and P-selectin expression in the kidneys. Similarly, it is found that ursolic acid (0.05% w/w) improved blood glucose levels, glucose intolerance, and insulin sensitivity compared to the diabetic group in diabetic rats and at the doses of 0.01% w/w and 0.05% w/w, it improved blood glucose, glycosylated hemoglobin, glucose tolerance, insulin tolerance and plasma leptin levels as well as aminotransferase activity in diabetic mice.

CONCLUSION

Diabetes is affecting a significant proportion of the population worldwide. It affects many organs including pancreas, kidney and liver. The disease is associated with a reduced quality of life and increased risk factors for mortality and morbidity. In diabetes treatment, traditional herbal folk medicines are getting popular. Due to their antioxidant properties, herbal products give positive and promising results. In this review, we demonstrated the antidiabetic activity of different phytochemicals (limonene, cinnamic acid and ursolic acid). The studies about their antidiabetic activity have shown that these phytochemicals may be beneficial in diabetes therapy. But further in vitro and in vivo studies needed to clear up their efficacy, mechanism and toxicity on diabetes treatment.

Author Contributions

These authors contributed equally.
REFERENCES

(Received 04 August 2016; accepted 29 August 2016)