SYNTHESIS AND ANTIBACTERIAL AND ANTIMYCOTIC EVOLUTION OF SOME ETHYL 1-ARYLOXYACETYLAMINO-5-ARYLPYRROLE-3-CARBOXYLIC ACID DERIVATIVES

BAZI ETL IK-AROLOKSIASETILAMINO-5-ARİLPIROL-3-KARBOKSILIK ASID TÜREVLERİNİN SENTEZLERİ VE ANTIBAKTERİYEL VE ANTIYÜZLEMLİCİ ETKİ YÖNÜNDEN DEĞERLENDIRİMLERİ

ŞEREF DEMİRAYAK1, AHMET Ç. KARABURUN1, NURİ KİRAZ2

1Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eskişehir, Turkey

2Osmangazi University, Faculty of Medicine, Department of Microbiology, Eskişehir, Turkey

In this study, some ethyl 1-aryloxyacetylamino-2-methyl-5-aryl-1H-pyrrole-3-carboxylic acid derivatives were obtained by reacting some aryloxyacetylhydrazide and 1-aryl-3-carboxy-1,4-pentadione derivatives. The antibacterial and antifungal activities of the pyrrole compounds were investigated and no considerable activity was obtained.

Keywords: Hydrazide; 1,4-Pentadione; Pyrrole; Antibacterial and antifungal activity

Bu çalışmada, bazı ariloksiasetilhidrazidleri ve 1-aril-3-karboksil 1,4-pentadiyon türevleri reaksiyona sokularak bazı etil 1-aryloxyacetylamino-2-metil-5-aril-1H-pirol-3-karboksilik asit türevleri elde edilerek antibakteriyeel ve antifungal etkileri araştırıldı ve kayda değer bir etki elde edilmedi.

Anahtar kelimeler: Hidrazid; 1,4-Pentadion; Pirol; Antibakteriyel ve antifungal aktivite

Introduction

A large number of pyrrole derivatives isolated from microbial sources have antibiotic properties (1,2). It's known that some 1-substituted-4-aryl-1H-pyrrole-3-carboxylic acid derivatives, structurally resembling naturally found antibiotic pyrrolenitrin, are considered as potential antifungal agents(3,4). Several 1,4- or 1,5-diarylpyrrole-3-carboxy derivatives were prepared and their antifungal activities and their structure-activity relationships were examined (5,7). In this study, as an extension of our previous works on pyrrolylphenylthiazole derivatives(8), some ethyl 1-aryloxyacetylamino-2-methyl-5-aryl-1H-pyrrole-3-carboxylic acid derivatives were synthesised to investigate their antimicrobial activities.

Materials and Methods

Melting points were determined by using a Gallenkamp apparatus and uncorrected. Spectroscopic data were recorded on the following instruments: IR: Shimadzu 435 IR spectrophotometer; 1H NMR: Jeol JNM-EX 90A FT NMR spectrometer and Bruker DPX 400NMR spectrometer.

Aryloxyacetylhydrazide(9,10) and 1-phenyl-3-carboxy-1,4-pentadione(3,5) were prepared according to the literature methods.

Ethyl 1-aryloxyacetylamino-2-methyl-5-aryl-1H-pyrrole-3-carboxylates

General Method

A mixture of a suitable I (5 mmol) and II (5 mmol) in acetic acid was refluxed for 30 min. The cooled mixture was poured into ice-water and neutralised with sodium carbonate. The precipitate formed was filtered and recrystallised from ethanol. Some characteristics of the compounds are shown in the Table.

1: IR(KBr)vmax (cm⁻¹): 3320 (N-H), 1690 (C=O, ester), 1656 (C=O, amide), 1177, 1061 (C-O). 1H-NMR δ(ppm): 1.28(3H, t), 2.36(3H, s), 4.22(2H, q), 4.85(2H, s), 6.62(1H, s), 7.05-7.50(10H, m), 11.50(1H, s).

3: IR(KBr)vmax (cm⁻¹): 3322 (N-H), 1687 (C=O, ester), 1655 (C=O, amide), 1180, 1060 (C-O). 1H-NMR δ(ppm): 1.31(3H, t), 2.35(3H, s), 2.53(3H, s), 4.21(2H, q), 4.85(2H, s), 6.60(1H, s), 7.03-7.46(9H, m), 11.74(1H, s).

8: IR(KBr)vmax (cm⁻¹): 3354 (N-H), 1702 (C=O, ester), 1655 (C=O, amide), 1180, 1060 (C-O). 1H-NMR δ(ppm): 1.30(3H, t), 2.35(3H, s), 4.23(2H, q), 4.88(2H, s), 6.60(1H, s), 7.09(2H, s), 7.22(1H, s), 7.29-7.43(5H,
Table 1. Some characteristics of the compounds

<table>
<thead>
<tr>
<th>Comp.</th>
<th>X</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>Yield</th>
<th>M.P. (°C)</th>
<th>Formulae</th>
<th>Mol. Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>89</td>
<td>139-140</td>
<td>C₂₂H₂₂N₂O₄</td>
<td>378.42</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>90</td>
<td>132-133</td>
<td>C₂₃H₂₄N₂O₄</td>
<td>392.44</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>92</td>
<td>141-142</td>
<td>C₂₃H₂₄N₂O₄</td>
<td>392.44</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>93</td>
<td>125-126</td>
<td>C₂₂H₂₁N₂O₄Cl</td>
<td>412.86</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>87</td>
<td>150-151</td>
<td>C₂₂H₂₁N₂O₄Cl</td>
<td>412.86</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>94</td>
<td>174-175</td>
<td>C₂₂H₂₀N₂O₄Cl₂</td>
<td>447.31</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>Cl</td>
<td>H</td>
<td>92</td>
<td>149-150</td>
<td>C₂₂H₂₀N₂O₄Cl₂</td>
<td>447.31</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>91</td>
<td>155-156</td>
<td>C₂₂H₂₀N₂O₄Cl₂</td>
<td>447.31</td>
</tr>
<tr>
<td>9</td>
<td>O</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NO₂</td>
<td>H</td>
<td>95</td>
<td>192-193</td>
<td>C₂₂H₂₁N₂O₆</td>
<td>423.41</td>
</tr>
<tr>
<td>10</td>
<td>S</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>78</td>
<td>112-113</td>
<td>C₂₂H₂₂N₂O₃S</td>
<td>394.48</td>
</tr>
<tr>
<td>11</td>
<td>O</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>87</td>
<td>163-164</td>
<td>C₂₂H₂₁N₂O₄Cl</td>
<td>412.86</td>
</tr>
<tr>
<td>12</td>
<td>O</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>88</td>
<td>134-135</td>
<td>C₂₃H₂₃N₂O₄Cl</td>
<td>426.88</td>
</tr>
<tr>
<td>13</td>
<td>O</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>93</td>
<td>156-157</td>
<td>C₂₂H₂₀N₂O₄Cl₂</td>
<td>447.31</td>
</tr>
<tr>
<td>14</td>
<td>O</td>
<td>Cl</td>
<td>Cl</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>92</td>
<td>151-152</td>
<td>C₂₂H₁₉N₂O₄Cl₃</td>
<td>481.76</td>
</tr>
<tr>
<td>15</td>
<td>O</td>
<td>Cl</td>
<td>H</td>
<td>Cl</td>
<td>Cl</td>
<td>H</td>
<td>95</td>
<td>154-155</td>
<td>C₂₂H₁₉N₂O₄Cl₃</td>
<td>481.76</td>
</tr>
<tr>
<td>16</td>
<td>O</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>NO₂</td>
<td>H</td>
<td>95</td>
<td>153-154</td>
<td>C₂₂H₂₁N₂O₆Cl</td>
<td>457.85</td>
</tr>
<tr>
<td>17</td>
<td>O</td>
<td>NO₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>79</td>
<td>162-163</td>
<td>C₂₂H₂₁N₂O₆</td>
<td>423.41</td>
</tr>
<tr>
<td>18</td>
<td>O</td>
<td>NO₂</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>82</td>
<td>175-176</td>
<td>C₂₃H₂₃N₂O₆</td>
<td>437.43</td>
</tr>
<tr>
<td>19</td>
<td>O</td>
<td>NO₂</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>82</td>
<td>186-187</td>
<td>C₂₃H₂₃N₂O₆</td>
<td>437.43</td>
</tr>
<tr>
<td>20</td>
<td>O</td>
<td>NO₂</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>87</td>
<td>171-172</td>
<td>C₂₂H₂₂N₂O₆Cl</td>
<td>457.85</td>
</tr>
<tr>
<td>21</td>
<td>O</td>
<td>NO₂</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>93</td>
<td>220-221</td>
<td>C₂₂H₂₀N₂O₆Cl</td>
<td>457.85</td>
</tr>
<tr>
<td>22</td>
<td>O</td>
<td>NO₂</td>
<td>Cl</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>91</td>
<td>179-180</td>
<td>C₂₁H₁₉N₃O₆Cl₂</td>
<td>492.30</td>
</tr>
</tbody>
</table>

m, 11.54 (1H, s).
13: IR(KBr)ν_max (cm⁻¹): 3320 (N-H), 1688 (C=O, ester), 1654 (C=O, amide), 1176, 1058 (C-O). ¹H-NMR δ(ppm): 1.29(3H, t), 2.38(3H, s), 4.22(2H, q), 4.86(2H, s), 6.60(1H, s), 7.06-7.53(8H, m), 11.60 (1H, s).
16: IR(KBr)ν_max (cm⁻¹): 3325 (N-H), 1695 (C=O, ester), 1662 (C=O, amide), 1521, 1360 (N=O), 11.76, 10.58 (C-O). ¹H-NMR δ(ppm): 1.32(3H, t), 2.40(3H, s), 4.20(2H, s), 6.66(1H, s), 7.04(2H, d, j=8.79 Hz), 7.29(2H, d, j=8.75 Hz), 7.34(2H, d, j=8.96 Hz), 8.24 (2H, d, j=8.96 Hz), 11.68 (1H, s).
16: IR(KBr)ν_max (cm⁻¹): 3317 (N-H), 1702 (C=O, ester), 1660 (C=O, amide), 1530, 1366 (N=O), 11.85, 10.66 (C-O). ¹H-NMR δ(ppm): 1.30(3H, t), 2.39(3H, s),
Scheme. Synthesis of the compounds
2.57(3H, s), 4.23(2H, s), 493(2H, q), :15.15Hz :18.32Hz
j: :15.05Hz), 6.90(1H, s), 6.95-7.46(4H, m), 7.76 (2H, d, j:8.68 Hz), 8.17 (2H, d, j:8.75 Hz), 11.74 (1H, s).
16: IR(KBr),max cm⁻¹: 3328(N-H), 1705(C=O, ester),
1659(C=O, amide), 1536, 1356 (N=O), 11.75, 10.70
(C=O). H-NMR δ(PPm): 1.29(3H, t), 2.39(3H, t), 4.24(2H, s), 4.93(2H, s), 6.91(1H, s), 7.35-7.43(2H, m), 7.59(1H, s), 7.76(2H, d, j:8.60 Hz), 8.20(2H, d, j:8.62 Hz),
11.80(1H, s).

Determination of the antimicrobial activity

Antibacterial and antifungal activities of the compounds 1-2 were determined using the tube dilution technique(11,12). The stock solutions of the compounds were prepared in DMSO. Ceftriaxone and clotrimazole were used as control antibacterial and antifungal agents. The standard bacteria and fungi strains used are S.Aureus ATCC 25923, E. Coli ATCC 25922, P.Aenuginosa ATCC 27853 and C.Albicans ATCC 10231.

Results and Discussion

Chemistry

The pyrrole derivatives were prepared using the synthetic methods outlined in Scheme 1.

Diketone compounds I, used as starting materials, were obtained by reacting α-bromoacetophenone derivatives with the enolate of ethyl acetoacetate formed by sodium in dry toluene.

Aryloxyacetylhydroxazole derivatives II, as depicted in Scheme, were obtained by reacting hydrazine with ethyl arylxyacetate, which was gained by the reaction of phenol derivatives with ethyl chloroacetate.

Paal-Knorr pyrrole synthesis conditions were performed for the synthesis of the pyrrole derivatives. To accomplish this I and II were heated in acetic acid.

The synthesised compounds were characterised by elemental analyses and spectral data. In the IR spectra, N-H, ester C=O and amide C=O stretching bands characterised for all compounds were observed at about 1754-1717 cm⁻¹, 1705-1688 cm⁻¹ and 1662-1654 cm⁻¹ respectively. In the NMR spectra, the signal due to the NH proton appeared at about 11.80-11.60 ppm. The other common groups for all compounds are methyl groups of pyrrole residue, methylene groups of arylxyacetyl residue and ethyl groups of ester functions.

Pyrrolyl-2-methyl and methylene protons of arylxyomethyl residue were observed as singlets at about 2.40-2.35 ppm and 4.93-4.85 ppm respectively. Methyl and methylene protons of carboxylo residue were resonated at about 1.32-1.28 ppm and 4.24-4.20 ppm respectively.

Microbiology

Antibacterial and antifungal activities of the compounds were determined by using the tube dilution technique. In consideration of the high antifungal activity of some of the pyrrole derivatives in the literature (3,7), we tested the antifungal activity of our compounds, however it was found that they were entirely ineffective.

References


Accepted: 12.12.1997

76