THE COMPARATIVE INVESTIGATION OF THE LEAF, FLOWER AND FRUIT EXTRACTS OF CRATAEGUS TANACETIFOLIA AND THE MEDICINAL SPECIES C. MONOGYNA ON THEIR EFFECTS ON THE CARDIOVASCULAR SYSTEM

CRATAEGUS TANACETIFOLIA YAPARAK, ÇİÇEK VE MEYVA EKSTRELERİNİN TİBBİ TÜR C.MONOGYNA İLE KARŞILAŞTIRMALI OLARAK KARDİOVASKÜLER SİSTEM ÜZERİNE ETKİLERİNİN ARAŞTIRILMASI

ŞULE TAMER¹, HÜSNİYE BİRMAN¹, GÜLAY MELİKOĞLU², ALİ H. MERİÇLİ²

¹ Department of Physiology, Faculty of Medicine, University of Istanbul, Çapa, 34290 Istanbul, TURKEY
² Department of Pharmacognosy, Faculty of Pharmacy, University of Istanbul, Beyazıt, 34452 Istanbul, TURKEY

The effects of Crataegus species, especially those of C.monogyna, which is accepted as the medicinal species, on the cardiovascular system, are well known. Herbal teas and preparations of the latter are widely used in pharmacies abroad.

The effects of the leaf, flower and fruit extracts of Crataegus tanacetifolia, an endemic species, on blood pressure, heart rate and ECG have been comparatively investigated against the medicinally accepted species, C.monogyna. The results of the investigation indicated that while the leaf and flower extracts of both species decreased the heart rate and blood pressure, the fruit extracts had no such effect.

Keywords: Crataegus tanacetifolia, Crataegus monogyna, heart rate, blood pressure

Anahtar Kelimeler: Crataegus tanacetifolia, Crataegus monogyna, kalp frekansı, kan basıncı

Introduction

The herbal teas and preparations of the Crataegus species are broadly employed by especially elderly patients in foreign countries, owing to their cardiotonic effects. Experiments have shown that the Crataegus extracts have a positive inotropic effect, increase the activity of the cardiac muscle cells and ameliorate its nutrition, act as a coronary dilator, and regulate the flow of blood. It is also reported that these extracts regulate the blood pressure and can normalize hypertension, due to their regulatory influence on the cardiac muscles. The Crataegus extracts have anti-arrhythmic effects and have been found effective in the management of tachycardia. Crataegus is also effectual in fortifying
the hearts of elderly people who suffer from myocardial weakness following an infectious disease. In addition to this, this extract finds use in arteriosclerosis and also as a mild cardiotonic in the initial stages of cardiac disorders. (1-3)

The activity of the *Crataegus* species is primarily due to the flavonoid compounds and procyanidines. Currently, the quality of the extracts is determined by their flavonoid contents via hyperoside. The leaves, flowers and unripe fruits of the *Crataegus* species are used as drugs. (4-5)

Crataegus tanacetifolia is an endemic species (6). A chemical research regarding the flavonoid compounds in the leaves, flowers and unripe fruits of the *C.tanacetifolia* implies that this species can be chemically considered as a medicinal plant (7).

The purpose of the present study was to make an investigative comparison between the drugs of *C.tanacetifolia*, the chemical research of which has been performed, and *C.monogyna*, which is considered as a medicinal species. The two species were compared with respect to their effects on blood pressure and heart rate.

Materials and Methods

Plant material

Crataegus tanacetifolia (Lam.) Pers. The flowers and leaves were collected in May 1989, and the unripe fruits 2 months later, from the Seben region, Bolu. The plant, identified by Prof. Dr. Kerim Alpinar, is registered with the number ISTE 61150 in the Herbarium of the Faculty of Pharmacy, University of Istanbul.

Crataegus monogyna (Jacq.) subsp. monogyna. The flowers and leaves were collected in May 1990, and the unripe fruits 2 months later, from the Bozöyük region, Bilecik. The plant, identified by Prof. Dr. Kerim Alpinar, is registered with the number ISTE 62476 in the Herbarium of the Faculty of Pharmacy, University of Istanbul.

Chemical Method

50 grams of the material was macerated with 500 ml of water at room temperature for 24 hours. In the end of this process, the mixture was filtered and the filtrate was concentrated in vacuo, to obtain a dry extract. The extract was then diluted with water so as to obtain a concentration of 50 mg/ml.

Physiological Method

60 adult, male, wistar, albino rats, weighing 200-600 grams were used. Each animal was anesthetized with 35 mg/kg IP sodium pentothal. A femoral artery and vein were both cannulated; the former to monitor the arterial blood pressure, and the latter to administer the extract. Conventional limb lead II was used to monitor the ECG, from which the heart rate was derived. The *Crataegus* was administered at doses of 2 mg/kg.

The cardiovascular parameters were determined by means of a Nihon Kohden RM 6000 polygraph. 8 test animals were used for each experiment.

The results shown in Table 1.

Table 1. The effects of leaf, flower and unripe fruit extracts of *C.tanacetifolia* and *C.monogyna* on blood pressure and heart rate

<table>
<thead>
<tr>
<th>Plant</th>
<th>Type of Extract</th>
<th>Blood Pressure (mm Hg)</th>
<th>Heart rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before administration of the extract</td>
<td>After administration of the extract</td>
</tr>
<tr>
<td>Crataegus</td>
<td>Leaf</td>
<td>100±5.4</td>
<td>70±3.1*</td>
</tr>
<tr>
<td>tanacetifolia</td>
<td>Flower</td>
<td>155±10.3</td>
<td>110±7.8*</td>
</tr>
<tr>
<td></td>
<td>Fruit</td>
<td>168±3.1</td>
<td>168±3.4</td>
</tr>
<tr>
<td>Crataegus</td>
<td>Leaf</td>
<td>170±4.3</td>
<td>68±3.4**</td>
</tr>
<tr>
<td>monogyna</td>
<td>Flower</td>
<td>160±11.2</td>
<td>120±5.7*</td>
</tr>
<tr>
<td></td>
<td>Fruit</td>
<td>150±8.7</td>
<td>140±5.8</td>
</tr>
</tbody>
</table>

*: p<0.01 **: p<0.001
The flavonoid contents of both species have been calculated in accordance with the German pharmacopoeia DAB 10 (8). The results are shown in Table 2.

Table 2. The percentages of flavonoids in *C.tanacetifolia* and *C.monogyna* extracts according to DAB 10

<table>
<thead>
<tr>
<th>Plant</th>
<th>Material</th>
<th>The amount of Flavonoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crataegus</td>
<td>Leaf</td>
<td>0.68%</td>
</tr>
<tr>
<td>tanacetifolia</td>
<td>Flower</td>
<td>0.58%</td>
</tr>
<tr>
<td></td>
<td>Fruit</td>
<td>0.24%</td>
</tr>
<tr>
<td>Crataegus</td>
<td>Leaf</td>
<td>1.26%</td>
</tr>
<tr>
<td>monogyna</td>
<td>Flower</td>
<td>0.83%</td>
</tr>
<tr>
<td></td>
<td>Fruit</td>
<td>0.31%</td>
</tr>
</tbody>
</table>

Results and Discussion

It is observed that the results presented in Tables 1 and 2 are proportional to each other, and that the chemical results also show correlation, i.e. due to the fact that the flavonoid content of the fruits of both species is very poor, the fruit fails to show any activity on blood pressure and heart rate. On the other hand, because the leaves and flowers are rich in flavonoids, these are found to manifest evident activity. DAB 10 has determined the desired flavonoid amount in *Crataegus* drugs as 0.7%. The major flavonoid component of *Crataegus monogyna* which is accepted as medicinal plant is hyperoside. Also special C-glycosides such as vitexin, vitexin 2" -rhamnoside are the typical components of this plant (9). It was shown that the percentage of the flavonoids in the flower leaves of the sample collected from Turkey was over the desired amount. The flavonoid amount of the leaves of *C.tanacetifolia* is chose to the desired amount. As the result of analyses the major flavonoid component of this plant was found as hyperoside. The C-glycosides vitexin and vitexin-2 – rhamnoside were also found in this plant. *C.tanacetifolia* is similar to *C.monogyna* when compared chemically, but since the former has lower flavonoid content, it differs only in flavonoid percentage. As can be concluded from the results, the leaves and flowers of *Crataegus tanacetifolia* contain flavonoid compounds - but not as much as those of *C.monogyna* - and the extracts of these parts are effluent on heartbeat and blood pressure.

References

Accepted 03.04.2000